Java 17 Quick
Syntax Reference

A Pocket Guide to the Java
SE Language, APIs, and Library

Third Edition
Mikael Olsson

Java 17 Quick Syntax
Reference

A Pocket Guide to the Java SE
Language, APIs, and Library

Third Edition

Mikael Olsson

Apress’

Java 17 Quick Syntax Reference: A Pocket Guide to the Java SE Language,
APIs, and Library

Mikael Olsson
Hammarland, Lansi-Suomi, Finland

ISBN-13 (pbk): 978-1-4842-7370-8 ISBN-13 (electronic): 978-1-4842- 7371-5
https://doi.org/10.1007/978-1-4842-7371-5

Copyright © 2022 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Janco Ferlic on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484273708. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7371-5

Table of Contents

About the AUhOFcccmminmmmmsessmsssss s xi
About the Technical REVIEWETcccccssssemmmssansssssnsmsssnsssssnsssssasssssnnss xiii
Introduction........cccuvcemnemmnmmmnmmens s ——————— Xv
Chapter 1: Hello World.......c.occcurrnnnmmmmmssssssnsssssssssssssssssssssssssssssssssssssnss 1
1LY LT3 1
Creating @ ProjECLccoveeenserrseserese s sss s se s s se e sessesessnnens 1
Ly Lo (00 o o S 2
C0dE HINS....ccereiricriiriisse e 4
Chapter 2: Compile and RuNccuvcmmmsemmssmmmsssmmssssssssssssssssssssnsssassssasssns 5
Running from the IDE.........ccoco v 5
Running from a Console WiNAOWcccceeerrverneneninscrnesene s sese e s sesessesenns 5
COMIMENTS ..o s e s sr e e s e s e re e e e e e nnnnnns 6
Preview FEATUIEScovovreerecre e 7
Chapter 3: Variablescummmmsmmsmsmsmsmsssssssmsmssssssssssssssssssssssssssssssnans 9
(D L B] L SRS 9
Declaring Variablesccccvevererrerienesnsinsesese s s ssssese e ssesessessessessssessesnens 10
AsSIgNING Variables ..o 10
USING Vari@bIES ..o e 10
INTEOEE TYPES ..o b ene s 11
FI0ating-Point TYPES......ccveeerreereeree s 11

iii

TABLE OF CONTENTS

08 T T 1 T R 12
BOO0IEAN TYPE. ...t e e p e 12
Variable SCOPE ... 13
ANONYMOUS BIOCK ... e 13
TYPE INFEIENCE......eiveeeerreer e 14
Chapter 4: 0peratorscouemmssmmsesmmssmmsssmssmmsssmssssssssssssnsssassnsass 15
Arithmetic OPErators.........ccvevvverrriere s e sae s 15
AsSIGNMENT OPEIALOLSccevereerrererrerere s s e s s e s sne s r e e s sae s 16
Increment and Decrement Operators..........cccvvnvniniennsnsenes s 16
Comparison OPEratorscocuvvcrierernsnse s s 17
LOGICal OPEIALOrS.......cceveereeereresere s 17
Bitwise OPEratorsccuvrereninneniene s s s s e s snens 18
Operator PreCEUBNCEcccevereererierieresissersesesssses e s ssesessessessessssesessesaessssessessens 18

Chapter 5: Stringcc.ccccmmnnnemnmmmmsesnmmnsssnmmsssssssssssssn 2 1

(0300 T T T T (T 21
ESCape CharaCters.........ccovvvrenireccrnc ettt 22
SHNG COMPATE ... e 23
SHNGBUFTEr ClaSSvcererererinerrese s ses s s s nenns 23
TEXE BIOCKScceeeereeeeerese s s s n s 24
Chapter 6: ArrayS......ccoussmmsesmsssssssssssssssssssssssssssssnssssnsssassssnssssnsssansssans 27
Array DEClarationccccvvrerniinreriere e 27
Array AlIOCALIONccceeeeerirercee e e a e e 27
Array ASSIGNMENL.........ccoviircerire e e s 28
MultidimenSionN@l AFTAYSc.ceceerenereesereneresese s sese e sessesenns 28
ArTAYLISE ClaSS ...cveereeererneerreeresse s sesss e senns 29

iv

TABLE OF CONTENTS

Chapter 7: Conditionalsccccrnnsmmmnmmssssnnnmsssssssnssssssnssesssssssssssssnnnnes 31
If STAtEMENT ... s 31
SWItCh STAtemMENt ... s 32
SWItCh EXPreSSioN.... ... 33
Ternary OPErator.......cccuueervsernsesere s nrnne e 35

Chapter 8: LOOPS....ccuuuusummmmmssssnnnmssssssnnsssssssnnsssssssnnssssssnnssssssnnnssssssnnnnss 37
L L1 0o o RS 37
DO WHIlE LOOP ..ottt re st se e s s sa e s sn e s s s s 38
0] I o SO OSSR UTSRRN 38
FOr EACH LOOP ..ottt sn s snn 39
Break and CONtiNUE..........ccereeeerenerec s 39
Labeled BIOCK.........coeeereecreeee e 40

Chapter 9: Methodsccuccsmvsmmmssmmsmmmsnmmsssmsssms s s ssassssassnsnss 41
Defining Methods.........covvrererrrrre e nnens 4
L0 1 a T 1= (T 42
Method Parameters ... 42
Return STatement............co oo 43
Method OVErloading.........cccvvererenerrnncrenese e 44
PasSiNg ArgUMENTSccoveerenenerenerrsse s s sessesenns 45

Chapter 10: Class......ccoussmmsmsmssnmmsssmsssmssssssssssassssnssssnsssasssssssssnsssansssnss 47
0DJECE Creationc.ceveeerierererer e s s s s s sae e saesre e s saeenes 47
Accessing 0bject MEMDEIScccvvviereverrerrerens s s e s sse e ssssssessees 48
0] LY 1T o PSR 49
THIS KEYWOIToveieirere sttt s s b 50
Constructor OVerloadingcoocecvrererenerensesnese s senns 50

TABLE OF CONTENTS

Constructor ChaiNiNgcccveeveeverrerieressesesseresssessessessessssessessesssssssessessessssessessens 51
INitial FIeld VAIUBS ... 51
Default CONSTIFUCTON ..o 52
NUIL et bbb e e 52
Default ValUES ..o e 53
(6T T4 F= Vo [I 0] 1T (0] RS 53

Chapter 11: Static......ccnmmmmmmmmmmmmmmmms s ——————D D

Accessing Static MEMDEIScovvvverierevenrereresss s s se e ssssessessessssssessees 56
STAtiC METNOUS ... 56
R3] L T oL 57
Static Initialization BIOCKS.........c.ccorrrerernnernsmssesesese s ssssesenns 57
Instance Initialization BIOCKSc.ccorvrernenesesesssesnsesssssssssessssessssesesssessssesens 58
Chapter 12: Inheritance.........ccccrrussmmmnmnssssnnnmmsssssnnmnsssssssessssssssessssnnnns 59
0 oo 3T RS 60
DOWNCASHING ..o e s 60
1Ty T TR0 0 0T L O 60
Pattern Matching SWItCh..........ccvvivinninrr 62
Restricting INNeritancCe.........c.coooveerecrncrreser s 62
Chapter 13: Overridingccuccccmmrnssssnnnmmssssnnnmsssssssnmssssssssesssssssssssssnnnnss 65
Overriding Methods.........c.ovcevveninenenne s 65
Override ANNOLALIONccccrcrerrr 66
Hiding Methods.........ccoceririerinn s s 67
Hiding FIEldSoocerereerre et sn e 68
Accessing Redefined Members..........cccovvninnnnninnns s 69
Calling Parent CONSTIIUCTONcocvrererenerreserene e 69

TABLE OF CONTENTS

Chapter 14: Packages and Import...........ccccinnnemmnmnsssssnnmmsssssssssssssnnns A
ACCESSING PACKAGEScccceverreriiirire s s s 72
Chapter 15: Modules.......cccusurrssmmrmsssnsmsssnsesssnsssssnsesssnsessssnssssnsssssnnsessas 75
Creating @ MOdUIE.........coecveeer e 75
UL T T T 11 S 77
Chapter 16: Access LeVels.......ccccuummmmmmmssssnnnmmsssssnnmsssssssssssssssnssssssnnnnss 79
Private ACCESS.....covererreerrnerise s 79
PaCKage-Private ACCESS.....cccevurrrrerierereesersersess s sessessessssessessessssessessessessssessessens 80
ProteCted ACCESS ..o s 81
PUBDIIC ACCESS ...t s 82
TOP-LEVEI ACCESSveerirrerie it 83
NESTEU ClASS ACCESScerreererreerreerreeressesessesessesesese s sse e ses e sessesessesesessssenns 83
AcCCESS-LeVel GUIAEINE..........ccerererereereser s 84
Chapter 17: Constantsccucccummmmssemmnmmssssnsnmmssssssnmsssssssnessssssssessssnnnns 85
LOCal CONSLANTS......coeviviriirerisseee s 85
CoNStANT FIEldScccoevererrriccre s 85
Constant Method Parametersccovvnnnmnnnnnnsnssesss s 86
Compile-Time and Runtime Constants.........c.ccococovvrininnnnnninnsnsesese s 86
Constant GUIAENINE........c..coeverererererrerere e 87
Chapter 18: Interface.......c.ccussmmrmmssnmmnmnssssnnnmmsssssnnmsssssssnmssssssnssssssnnnns 89
Interface MEMDEIS........cccv e e 89
INtErface EXAMPIEcovvcervererererserse st sen e se e sre e s sne e 90
Functionality Interface ... 91
Class INTEITACEccceerererrrecereress s 92
INTEIfACE CIASSEScoceveereecreree e e 93

vii

TABLE OF CONTENTS

Default Interface Methods...........ccocerirrnnnnn s 94
Static Interface Methods..........cooveerercrernnesr e 94
Chapter 19: Abstract........c.ccusrmmrmmsssnnnnmmsssssnmmsssssnmsssssssessssssesan—m 97
Abstract Class EXamPIE ... 97
Abstract Classes and INTerfacescouervrrnnesenenesnsesessesese s sessnnes 99
Chapter 20: ENUMcciiseemmmmmmmmmmmmssnsnnnnnnnss 101
ENUM CIASSoviviirreeriee s ss s s s 102
Chapter 21: Exception Handlingcccccussseemmmnssssnnnmssssssnsssssssssnsssssnns 105
0 RS 105
(021 (0 18 20T 106
FINAIY BIOCK......cccieiesirircre e s 107
Throwing EXCEPLIONS......ccccviiiriiire e 109
Checked and Unchecked EXCEPLIONScccovvnvniirennsnsene s sensennens 109
Exception Hierarchyccoveeernnmsnisesssesssessssesss s sesesessssessenes 110
Chapter 22: Boxing and UnNbOXiNgccccussseesmesssssnsssssssssnsssssssnsnsssssnns 111
Autoboxing and AUtOUNDOXINGcccvervveririere e 112
Primitive and Wrapper GUIdEIINE.........ccvevverrernnensereresesseressesessessessessssessessees 112
Chapter 23: GENETICS «uuuueerressssnsnsessssnnnsesssssnnsssssssnssssssssnnssssssnnnnssssnnns 113
GENENIC CIASSEScecuecrererrereeeresesseeese e e se s ss e nesansans 113
GENEric MEthOUScoeeee e e 114
Calling Generic Methodsc.cuovererernsennesene e 115
GENEriC INTEITACES.....ccve s s 116
Generic TYPe Parametersccvvvereveererseresssessesesse s sse e ssssessessesasssssessessens 117
Generic Variable USAQEScvivverrerererserseressssessessessessssessessesssssssessesssssssessessens 117

viii

TABLE OF CONTENTS

Bounded Type Parameters ... s sse s ssessens 118
Generics and ODJECL..........ccccerecrrcerre e e 120
Chapter 24: Lambda EXPreSSionscccvusssssssssssssssssssssssssssssssssssssssnns 123
Lambda ODJECLScccrreererereree s 123
Lambda Parameters........c.ccvinininnnnnnese s s s ssssessessenns 125
INA@X..ciiiiisennniisssnnnnnssssnnnnnsssssnnnessssnnnnssssssnnnessssnnnnessssnnnnsssssnnnnesssnnnnnss 127

ix

About the Author

Mikael Olsson is a professional web
entrepreneur, programmet, and author. He
works for an R&D company in Finland where
he specializes in software development. In

his spare time, he writes books and creates
websites that summarize various fields of
interest. The books he writes are focused on
teaching their subject in the most efficient way
possible, by explaining only what is relevant

and practical without any unnecessary
repetition or theory.

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic
developer and researcher who enjoys learning
new technologies for his own experiments
and creating new integrations. Manuel won
the Springy Award - Community Champion
and Spring Champion 2013. In his little free
time, he reads the Bible and composes music
on his guitar. Manuel is known as dr_pompeii.
He has tech-reviewed numerous books

for Apress, including Pro Spring MVC with
WebFlux (2020), Pro Spring Boot 2 (2019), Rapid Java Persistence and
Microservices (2019), Java Language Features (2018), Spring Boot 2 Recipes
(2018), and Java APIs, Extensions and Libraries (2018). Read his 13 detailed
tutorials about many Spring technologies, contact him through his blog
atwww.manueljordanelera.blogspot.com, and follow him on his Twitter
account, @dr_pompeii.

xiii

https://www.manueljordanelera.blogspot.com

Introduction

Java is a high-level object-oriented programming language developed by
Sun Microsystems, which became part of Oracle Corporation in 2010. The
language is very similar to C++ but has been simplified to make it easier
to write bug-free code. Most notably, unlike C++, there are no pointers

in Java—instead, all memory allocation and deallocation is handled
automatically.

Despite simplifications like this, Java has considerably more
functionality than C++, due to its large class library. Java programs
also have high performance and can be made very secure, which
has contributed to making Java the most popular general-purpose
programming language in use today.

Another key feature of Java is that it is platform independent. This is
achieved by only compiling programs halfway, into platform-independent
instructions called bytecode. The bytecode is then interpreted, or run,
by the Java Virtual Machine (JVM). That means any system that has
this program and its accompanying libraries installed can run Java
applications.

To allow Java to be used in a variety of environments, there are four
different editions: Java ME, Java SE, Java EE, and Java FX. Each edition
contains a JVM and a set of class libraries. Java SE (Standard Edition)
provides the standard JVM along with the commonly used libraries for
building applications, in particular desktop applications. Java ME (Micro
Edition) is a small-footprint version of Java SE designed for running on
small devices such as mobile phones. Java EE (Enterprise Edition) is an
extended version of Java SE that includes libraries for building large-scale

INTRODUCTION

web applications. The most recently added edition is JavaFX, a lightweight
version intended for building desktop and rich web applications. This
edition includes a new library for making graphical user interfaces (GUIs),
which is intended to replace the standard GUI library called Swing used in
Java SE.

To allow Java to be used in a variety of environments, there are four
different editions: Java SE, Java ME, Java EE, and Java FX. Each edition
contains a JVM and a set of class libraries. Java SE (Standard Edition)
provides the standard JVM along with the commonly used libraries for
building applications, in particular desktop applications. Java ME (Micro
Edition) is a small-footprint version of Java SE designed for running on
small devices such as mobile phones. Java EE (Enterprise Edition) is an
extended version of Java SE that includes libraries for building large-scale
web applications. The most recently added edition is Java FX, a lightweight
version intended for building rich web applications.

The Java language and class libraries have undergone major changes
since their initial release in 1996. The naming conventions for the versions
have gone through a few revisions as well, mainly for marketing reasons.
The major releases include JDK 1.0, JDK 1.1, J2SE 1.2, J2SE 1.3, J2SE 1.4,
J2SE 5.0, followed by Java SE 6 to Java SE 17, with Java SE 17 being the
current version as of writing. For the sake of simplicity, the Java versions
will be referred to as Java 1-17 in this book. Note that Java is designed to be
backward-compatible. Therefore, the Virtual Machine for Java 17 can still
run Java 1 applications.

CHAPTER 1

Hello World

Installing

Before you can program in Java, you need to download and install a Java
Development Kit (JDK), such as the Standard Edition (JDK SE) from
Oracle’s website.! Among other things, the JDK includes the Java compiler,
the class libraries, and the virtual machine needed to run Java applications.
You should also download an Integrated Development Environment (IDE)
as it will make development in Java much easier. One such Java IDE is
Apache NetBeans,? which is available for free on Windows, macOS, and
Linux. If you don’t want to use any IDE at all, using a regular text editor is
also an option. To work without an IDE, you can create an empty file with
the .java extension—for example, MyApp.java—and open it in your text
editor of choice.

Creating a Project

If you decide to use an IDE (recommended), you need to create a
project, which will manage the Java source files and other resources.
To create a project in NetBeans, click File » New Project. In the dialog

"www.oracle.com/java/technologies/javase-downloads.html
*https://netbeans.org

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_1

https://doi.org/10.1007/978-1-4842-7371-5_1
http://www.oracle.com/java/technologies/javase-downloads.html
https://netbeans.org

CHAPTER 1 HELLO WORLD

box, select the Java Application project under the Java with Ant category,
and click Next. In this dialog box, set the project name to “MyProject”
and the name of the main class to “myproject. MyApp”. Change the
project’s location if you want, and click Finish to generate the project.
The project’s only file, MyApp.java, will then open up, containing some
default code. You can go ahead and remove all of that code so that you
start with an empty source file.

Hello World

When you have your project and programming environment set up, the
first application you will create is the Hello World program. This program
will teach you how to compile and run Java applications, as well as how to
output a string to a command window.

The first step in creating this program is to add a public class to your
MyApp.java source file. The class must have the same name as the physical
source file without the file extension—in this case, “MyApp.” It’s legal
to have more than one class per file in Java, but only one public class is
allowed, and its name must match the filename. Keep in mind that Java is
case sensitive. The curly brackets following the class name delimit what
belongs to the class and must be included. The brackets, along with their
content, are referred to as a code block, or just a block.

public class MyApp {}

Java classes are organized into packages, which are similar to
namespaces in other languages. A package statement needs to appear at
the top of the file to designate which package a file belongs to. This name
must match the directory the file is located in relative to the project’s
source directory, so in this case, the package name is myproject.

package myproject;
public class MyApp {}

CHAPTER 1 HELLO WORLD

Next, add the main method inside the class. This is the starting point of
the application and must always be included in the same form as is shown
in the following code. The keywords themselves will be examined in later
chapters.

package myproject;
public class MyApp {
public static void main(String[] args) {}

}

The last step in completing the Hello World program is to output the
text by calling the print method. This method is located inside the System
class and then another level down inside the out class. The method takes
a single argument—the string to be printed—and it ends with a semicolon,
as do all statements in Java.

package myproject;
public class MyApp {
public static void main(String[] args) {
System.out.print("Hello World");
}
}

Note that the dot operator (.) is used to access members of a class.
Similar to print, there’s also the println method, which automatically
adds a line break at the end of the printed string. The System class belongs
to the java.lang package, which is always included in a Java project.

CHAPTER 1 HELLO WORLD

Code Hints

If you're unsure of what a specific class contains, or what arguments a
method takes, you can take advantage of code hints in some IDEs, such

as NetBeans. The code hint window appears anytime you're typing code,
and there are multiple predetermined alternatives. You can also bring it
up manually by pressing Ctrl+spacebar. This is a powerful feature that
gives you quick access to the class libraries and their members, along with
descriptions.

CHAPTER 2

Compile and Run

Running from the IDE

With your Hello World program complete, you can compile and run it in
one of two ways. The first method is by selecting Run from the menu bar
of the IDE you're using. In NetBeans, the menu command is Run » Run
Project. The IDE will then compile and run the application, which displays
the text “Hello World” in the output window of the IDE.

Running from a Console Window

The other way is to manually compile the program using a console
window, such as C:\Windows\System32\cmd.exe under Windows. The
most convenient way to do this is to first add the JDK bin directory to the
PATH environment variable. In Windows, you do this using the SET PATH
command and then by appending the path to your JDK installation’s bin
folder separated by a semicolon. Note that the exact path depends on what
version of the JDK you have installed.

SET PATH=%PATH%;"C:\Program Files\Java\jdk-17.0.2\bin"

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_2

https://doi.org/10.1007/978-1-4842-7371-5_2

CHAPTER2 COMPILE AND RUN

By doing this, the console will be able to find the Java compiler from
any folder for the duration of this console session. The PATH variable can
also be permanently changed.! Next, navigate to the folder where the Java
source file is located, and run the compiler by typing javac followed by the
complete filename.

C:\MyProject\src\myproject> javac MyApp.java

The program will be compiled into a class file called MyApp.class. This
class file contains bytecode instead of machine code, so to execute it, you
need to call the Java Virtual Machine by typing java followed by the fully
qualified class name, which includes the package name. This command
needs to be executed from the parent folder, the project’s source folder.
Notice that the .java extension is used when compiling a file, but the .class

extension is not used when running it.
C:\MyProject\src> java myproject.MyApp

Alternatively, as of Java 11, you can both compile and run the source
file by giving the complete filename to the java command:

java MyApp.java

Comments

Comments are used to insert notes into the source code and have no effect
on the end program. Java has the standard C++ comment notation, with

both single-line and multi-line comments.
// single-line comment

/* multi-line

comment */

"www.java.com/en/download/help/path.xml

http://www.java.com/en/download/help/path.xml

CHAPTER2 COMPILE AND RUN

In addition to these, there is the Javadoc comment. This comment is
used to generate documentation by using a utility included in the JDK bin
folder, which is also called Javadoc.

/** javadoc
comment */

Preview Features

A preview feature is a new feature that is subject to change in future
JDK releases. To compile code that contains preview features, you
must specify an additional command-line option for your project. In
NetBeans, this is done by first opening the File » Project Properties
window. From there, select the Compiling tab from the Build category,
and at the bottom of this window, add “--enable-preview” in the input
box labeled “Additional Compiler Options”. Click OK, and preview
features will be enabled for this project.

CHAPTER 3

Variables

Variables are used for storing data in memory during program execution.

Data Types

Depending on what data you need to store, there are several kinds of data
types. Java has eight types built into the language, called primitives. The
integer (whole number) types are byte, short, int, and long. The float
and double types represent floating-point numbers (real numbers). The
char type holds a Unicode character, and the boolean type contains either
a true or false value. Except for these primitive types, every other type in
Java is represented by a class, an interface, or an array.

Data Type Size (Bits) Description
byte 8 Signed integer
short 16
int 32
long 64
float 32 Floating-point number
double 64
char 16 Unicode character
boolean 1 Boolean value
© Mikael Olsson 2022

M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_3

https://doi.org/10.1007/978-1-4842-7371-5_3

CHAPTER 3 VARIABLES

Declaring Variables

To declare (create) a variable, you start with the data type you want it to
hold followed by a variable name. The name can be anything you want,
butit’s a good idea to give your variables names that are closely related to
the values they will hold. The standard naming convention for variables is
that the first word should be lowercase and any subsequent words initially
capitalized.

int myInt;

Assigning Variables

To give the variable a value, you use the assignment operator (=) followed
by the value. When a variable is initialized (assigned a value), it then
becomes defined (declared and assigned).

myInt = 10;

The declaration and assignment can be combined into a single

statement:
int myInt = 10;

If you need multiple variables of the same type, there is a shorthand
way of declaring or defining them using the comma operator (,):

int myInt = 10, myInt2 = 20, myInt3;

Using Variables

Once a variable has been defined, you can use it by simply referencing the
variable’s name—for example, to print it:

System.out.print(myInt);

10

CHAPTER 3 VARIABLES

Integer Types

As shown earlier, there are four signed integer types you can use,
depending on how large a number you need the variable to hold:

byte myInt8 =2; // -128 to +127
short myInt16 = 1; // -32768 to +32767
int myInt32 = 0; // -2"31 to +2"31-1
long myInté64 = -1; // -2"63 to +2"63-1

In addition to standard decimal notation, integers can also be assigned
by using octal or hexadecimal notation. As of Java 7, a binary notation is
also available.

int myHex = 0xF; // hexadecimal (base 16)
int myOct = 07; // octal (base 8)
int myBin = 0b10; // binary (base 2)

Digits in a number can be separated by an underscore (_). This feature
was introduced in Java 7 and is provided only to improve readability.

int bigNumber = 10 000 000;

Floating-Point Types

The floating-point types can store integers as well as floats. They can be
assigned with either decimal or exponential notation.

double myDouble = 3.14;
double myDouble2 = 3e2; // 3*10"2 = 300

11

CHAPTER 3 VARIABLES

Note that constant floating-point numbers in Java are always kept
internally as doubles. Therefore, if you try to assign a double to a float,
you’ll get an error because a double has a higher precision than a float. To
assign it correctly, you can append an F character to the constant, which
says that the number is in fact a float.

float myFloat
float myFloat

3.14; // error
3.14F; // ok

A more common and useful way to do that is by using an explicit
cast. An explicit cast is performed by placing the desired data type in
parentheses before the variable or constant that is to be converted. This
will convert the value to the specified type—in this case, float—before the
assignment occurs.

float myFloat = (float)3.14;

Char Type

The char data type can contain a single Unicode character, delimited by
single quotes:

char myChar = 'A';

Chars can also be assigned by using a special hexadecimal notation
that gives access to all Unicode characters:

char myChar = "\u0000'; // \u0000 to \uFFFF

Boolean Type

The boolean type can store a Boolean value, which is a value that can only
be either true or false. These values are specified with the true and false
keywords.

boolean myBool = false;

12

CHAPTER 3 VARIABLES

Variable Scope

The scope of a variable refers to the code block within which it’s possible
to use that variable without qualification. For example, a local variable is
a variable declared within a method. Such a variable will only be available
within the method’s code block, after it’s been declared. Once the scope
(code block) of the method ends, the local variable will be destroyed.

public static void main(String[] args)

{

int localVar; // local variable

}

In addition to local variables, Java has field- and parameter-type
variables, which later chapters will cover. But Java doesn’t have global
variables, as, for example, C++ does.

Anonymous Block

You can restrict the scope of local variables using an anonymous
(unnamed) code block. This construct is seldom used, because if a method
is large enough to warrant the use of an anonymous block, a better choice
is often to break up the code into separate methods.

public static void main(String[] args)

{

// Anonymous code block

{

int localVar = 10;

}

// localVar is unavailable from here

13

CHAPTER 3 VARIABLES

Type Inference

Beginning with Java 10, local variables can be declared with var to have
the compiler automatically determine the type of the variable based on its
assignment. The following two declarations are therefore equivalent:

var i = 5; // Implicit type

int 1 = 5; // Explicit type

When to use var comes down to preference. In cases when the type of
the variable is obvious from the assignment, use of var may be preferable
to shorten the declaration and improve readability. The benefit becomes
more apparent when using a non-primitive type as seen in this example.

// No type inference
java.util.Arraylist a = new java.util.ArraylList();

// With type inference
var a = new java.util.Arraylist();

Keep in mind that var can only be used when a local variable is both
declared and initialized at the same time.

14

CHAPTER 4

Operators

Operators are special symbols used to operate on values. The operators
that deal specifically with numbers can be grouped into five types:
arithmetic, assignment, comparison, logical, and bitwise operators.

Arithmetic Operators

The arithmetic operators include the four basic arithmetic operations,
as well as the modulus operator (%), which is used to obtain the division

remainder:
float x = 3+2; // addition (5)
X = 3-2; // subtraction (1)
X = 3*2; // multiplication (6)
x = 3/2; // division (1)
X = 3%2; // modulus (1)

Note that the division sign gives an incorrect result. That’s because
it operates on two integer values and will therefore round the result and
return an integer. To get the correct value, one of the numbers must be
explicitly converted to a floating-point type.

float x = (float)3/2; // 1.5

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_4

15

https://doi.org/10.1007/978-1-4842-7371-5_4

CHAPTER 4 OPERATORS

Assignment Operators

The second group is the assignment operators—most importantly, the
assignment operator itself (=), which assigns a value to a variable:

int 1 = 0; // assignment

A common use of the assignment and arithmetic operators is to
operate on a variable and then save the result back into that same variable.
These operations can be shortened with the combined assignment

operators.

i+=5; // 1= 1i+5;
i-=5;//1=1-5;
i*=75; // 1= 1i%*5;
i/=5;//1=1/5;
i%=5; // 1= 1%5;

Increment and Decrement Operators

Another common operation is to increment or decrement a variable by
one. This can be simplified with the increment (++) and decrement (——)
operators.

++1; // 1 = i+1
——1i; // 1 =1i-1
Both of these can be used either before or after a variable:
++1; // pre-increment
——1i; // pre-decrement

i++; // post-increment
i——; // post-decrement

16

CHAPTER 4 OPERATORS

The result on the variable is the same whichever is used. The difference
is that the post-operator returns the original value before it changes the
variable, while the pre-operator changes the variable first and then returns

the value.
int x, y;
X =5; ¥ = X++; // y=5, x=6
X =05; Yy =++x; // y=6, x=6

Comparison Operators

The comparison operators compare two values and return either true or
false. They're mainly used to specify conditions, which are expressions that
evaluate to either true or false.

boolean b = (2==3); // equal to (false)

(2'=3); // not equal to (true)

(2>3); // greater than (false)

(2¢3); // less than (true)

(2>=3); // greater than or equal to (false)

(2¢=3); // less than or equal to (true)

S O O © ©
1]

Logical Operators

The logical operators are often used together with the comparison
operators. Logical and (&&) evaluates to true if both the left and right side
are true, and logical or (| |) is true if either the left or right side is true. For
inverting a Boolean result, there is a logical not (!) operator. Note that for
both logical and and logical or, the right-hand side won’t be evaluated if
the result is already determined by the left-hand side.

boolean b = (true 8& false); // logical and (false)
b = (true || false); // logical or (true)
b = !(true); // logical not (false)

17

CHAPTER 4 OPERATORS

Bitwise Operators

The bitwise operators can manipulate individual bits inside an integer
type. For example, the right shift operator (>>) moves all bits except the
sign bit to the right, whereas zero-fill right shift (>>>) moves all bits right
including the sign bit.

byte b = 5 & 4; // 101 & 100
=5 | 4; // 101 | 100
=5"4; // 101 " 100
=4 << 1; // 100 << 1
=4 > 1; // 100 >> 1 = 10 (2) // right shift

= 4 >>>1; // 100 >>>1 = 10 (2) // zero-fill right shift
= ~4; // ~00000100 = 11111011 (-5) // invert

100 (4) // and
101 (5) // or
001 (1) // xor
1000 (8) // left shift

S O ©C O T o

These bitwise operators have shorthand assignment operators, just like
the arithmetic operators:

int i = 5;
i&= 4; // "and" and assign
i |=4; // or and assign
i "= 4; // xor and assign
i <<= 1; // left shift and assign
i »>»=1; // right shift and assign
i >>>=1; // right shift and assign (move sign bit)

Operator Precedence

In Java, expressions are normally evaluated from left to right. However,
when an expression contains multiple operators, the precedence of

those operators decides the order that they're evaluated in. The order of
precedence is shown in the following table. This same order also applies to
many other languages, such as C++ and C#.

18

CHAPTER 4 OPERATORS

Precedence Operator Precedence Operator

1 ++——1~ 7 &

2 1'% 8 N

3 +— 9 I

4 << >> >>> 10 &&

5 <<=>>= 1 Il

6 === 12 = operator=

For example, logical and (88) binds weaker than relational operators,
which in turn bind weaker than arithmetic operators:

boolean b = 2+3 > 1*4 && 5/5 == 1; // true

To avoid having to learn the precedents of all operators, and to clarify
the intent, you can use parentheses to specify which part of the expression
will be evaluated first:

boolean b = ((2+3) > (1*4)) && ((5/5) == 1); // true

19

CHAPTER 5

String

The String class in Java is a data type that can hold string literals. String is
areference data type, as are all non-primitive data types. This means that
the variable contains an address to an object in the memory and not the
object itself. A String object is created in the memory, and the address to
the object is returned to the variable. As seen in the following code, string
literals are delimited by double quotes:

String a = "Hello";

String literals are stored in the so-called String pool, maintained by
the String class. For performance reasons, any string literal that is equal to
a previously created string will refer to the same String object in the pool.
This works because strings in Java are immutable and therefore cannot be
changed without creating a new String object.

"Hello";
"Hello"; // refers to same object as a1

String a1
String a2

Combining Strings

The plus sign is used to combine two strings. Known as the concatenation
operator (+) in this context, it has an accompanying assignment operator
(+=) that appends one string to another and creates a new string.

String a = "Hello";
String b = " World";
© Mikael Olsson 2022

M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_5

21

https://doi.org/10.1007/978-1-4842-7371-5_5

CHAPTER5 STRING

String c = a+b; // "Hello World"
a +=b; // "Hello World"

Note that although a statement may be divided into multiple lines, a
string must be on a single row unless it’s split up using the concatenation
operator:

String x
= "Hello " +
"World";

Escape Characters

For adding new lines to the string itself, there is the escape character (\n).
This backslash notation is used to write special characters, such as
backslash and double quotes. Among the special characters is also a
Unicode character notation for writing any character. All the escape
characters can be seen in the following table.

Character Meaning

\n Newline

\t Horizontal tab

\b Backspace

\1 Carriage return

\uFFFF Unicode character(four-digit hex number)
\f Form feed

\’ Single quote

\” Double quotes

\\ Backslash

22

CHAPTER5 STRING

String Compare

The way to compare two strings is to use the equals method of the String
class. If the equality operator (==) is used, the memory addresses will be
compared instead.

boolean x = a.equals(b); // compares string
boolean y = (a == b); // compares address

Bear in mind that all strings in Java are String objects. Therefore,
it's possible to call methods directly on constant strings, just as it is on
variables.

boolean z = "Hello".equals(a); // true

StringBuffer Class

The String class has a large number of methods available, but it doesn't
contain any methods for manipulating strings. That’s because strings in
Java are immutable. Once a String object has been created, the contents
can’t be changed unless the whole string is completely replaced. Because
most strings are never modified, this was done on purpose to make the
String class more efficient. For cases when you need a modifiable string,
you can use the StringBuffer class, which is a mutable string object.

StringBuffer sb = new StringBuffer("Hello");

This class has several methods to manipulate strings, including
append, delete, and insert:

sb.append(" World"); // add to end of string
sb.delete(0, 5); // remove 5 first characters
sb.insert(0, "Hello"); // insert string at beginning

23

CHAPTER5 STRING

You can convert a StringBuffer object back into a regular string with
the toString method, which returns a string representation of the object.
It exists for every class in Java, because it’s defined by Object, which is
inherited by all classes.

String s = sb.toString();

Text Blocks

A text block is a multi-line string delimited by three double quotes (""").
It provides a simplified way to write a string that spans more than one line
without having to specify escape characters, such as newlines or quotes.

String textBlock = """
line 1

line 2""";

The line break after the opening delimiter is mandatory, so a text block
must span more than one line. Any line break used within a text block will
automatically be interpreted as a newline character, so the previous text
block is equivalent to the following string:

String s = "line 1\nline 2";

Whitespace that indents one line of text relative to other lines will
be kept. However, any initial whitespace used to indent all lines will be
removed.

String html = """

<div>
<p>Hi</p>
</div>""";

24

CHAPTER 5 STRING
This text block is therefore identical to the following string:
String html = "<div>\n <p>Hi</p>\n</div>";

Text blocks were introduced as a preview feature in Java 13 and
became a standard feature as of Java 15.

25

CHAPTER 6

Arrays

An array is a fixed-size data structure used for storing a collection of values
of a single type.

Array Declaration

To declare an array, a set of square brackets is appended to the data type
the array will contain, followed by the array’s name. Arrays can be declared
with any data type, and all of its elements must then be of that type.

int[] x;

Alternatively, the brackets may be placed after the array name.
However, this form is discouraged. Since the brackets affect the type, they
should appear next to the type.

int y[]; // discouraged form

Array Allocation

The array is allocated with the new keyword, followed again by the data
type and a set of square brackets containing the length of the array—the
fixed number of elements the array can contain. Once the array is created,
the elements will automatically be assigned to the default values for that
data type, which is zero (0) in the case of an int array.

int[] y = new int[3]; // allocate 3 elements with value 0

© Mikael Olsson 2022 27
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_6

https://doi.org/10.1007/978-1-4842-7371-5_6

CHAPTER6 ARRAYS

Array Assignment

To fill the array, elements can be referenced one at a time by placing the
element’s numerical index inside the square brackets and then assigning
them values. Notice that the index starts with zero.

y[o] = 1;
y[1] = 2;
y[2] = 3;

Alternatively, the values can be assigned all at once using a curly
bracket notation. The new keyword, data type, and square brackets may be
optionally left out if the array is declared at the same time.

int[] x
int[] x

new int[] {1,2,3};
{1,2,3};

Once the array elements are initialized, they can be accessed by
referencing the elements’ indexes inside the square brackets:

System.out.print(x[0] + x[1] + x[2]); // "6"

Multidimensional Arrays

Multidimensional arrays are declared, created, and initialized like one-
dimensional arrays, except that they have additional square brackets. They
can have any number of dimensions, and for each dimension, another set
of square brackets is added.

String[][] x
String[][] y

{{"00","01"},{"10","11"}};
new String[2][2];

28

CHAPTER6 ARRAYS

ylo][o] = "00";
y[o][1] = "o1";
y[1][o] = "10";
y[1][1] = "12%;

System.out.print(x[o][0] + x[1][1]); // "o0011"

ArrayList Class

Something important to keep in mind about arrays is that their length is
fixed and there’s no way to change their size. The size of an array can be
retrieved through the length member of the array.

Int[] x = new int[3];
int size = x.length; // 3

For cases when a resizable array is needed, the generic ArrayList<T>
class can be used, which is located in the java.util package. The data type
that this list will hold is specified inside the angle brackets (<>). Generic
classes will be looked at in more detail in later chapters.

import java.util.Arraylist;

/1 ...

// Create an Arraylist collection for strings
java.util.Arraylist<String> a = new java.util.Arraylist<>();

The ArraylList class has several useful methods to change the list,
such as add, set, and remove:

a.add("Hi"); // add an element
a.set(0, "Hello"); // change first element
a.remove(0); // remove first element

29

CHAPTER6 ARRAYS

To retrieve an element from the ArrayList<T>, you use the get
method. The element then has to be explicitly cast back to its original type,
because it is stored internally as the Object type, which can to hold any
reference data type.

a.add("Hello World");
String s = (String)a.get(0); // Hello World

30

CHAPTER 7

Conditionals

Conditional statements are used to execute different code blocks based on
different conditions.

If Statement

The if statement will only execute if the condition inside the parentheses
is evaluated to true. The condition can include any of the comparison and
logical operators.

int x = 1;

/] ...

if (x == 1) {
System.out.println(x + " = 1");

}

To test for other conditions, the if statement can be extended by any
number of else-1if clauses. Each additional condition will only be tested if
all previous conditions are false.

else if (x > 1) {
System.out.println(x + " > 1");

}

© Mikael Olsson 2022 31
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_7

https://doi.org/10.1007/978-1-4842-7371-5_7

CHAPTER 7 CONDITIONALS

For handling all other cases, there can be one else clause at the end,
which executes if all previous conditions are false:

else {
System.out.println(x + " < 1");

}

The curly brackets can be left out if only a single statement needs to be
executed conditionally. However, it is considered good practice to include
them since they improve code readability.

if (x == 1)
System.out.println(x + " = 1");
else if (x > 1)
System.out.println(x + " > 1");
else

System.out.println(x + " < 1");

Switch Statement

The switch statement checks for equality between a value and a series of
case labels. It then executes the matching case. The statement can contain
any number of cases and may end with a default label for handling all
other cases.

switch (x)

{
case 0: System.out.println(x + " is 0"); break;
case 1: System.out.println(x + " is 1"); break;
default: System.out.println(x + " is something else");

}

32

CHAPTER 7 CONDITIONALS

Note that the statements after each case label aren’t surrounded
by curly brackets. Instead, the statements end with the break keyword.
Without the break, the execution will fall through to the next case. This can
be useful if several cases need to be evaluated in the same way.

Any integer data type can be used with a switch statement, including
byte, short, int, and char. As of Java 7, the String type is also permitted.

String fruit = "apple";

switch (fruit)

{
case "apple": System.out.println("apple"); break;
default: System.out.println("not an apple");

}

Switch Expression

The switch was extended with new preview features in Java 12 that became
standard features in Java 14. Consider the following switch which is used to
simulate an expression (code that evaluates to a value):

String result;
switch (x)
{

case 1: result

"one"; break;

case 2:

case 3: result = "two or three"; break;
default: result = "many";

33

CHAPTER 7 CONDITIONALS

This code can be made more concise using the arrow label (->) instead
of the traditional case label. When using this form, only a single expression
or statement may appear after the arrow label, and each case may include
more than one constant, separated by commas. Arrow labels do not allow
fall-throughs so the break keyword is not used.

String result;

switch (x)

{
case 1 -> result = "one";
case 2, 3 -> result = "two or three";
default -> result = "many";

}

This switch statement can be further simplified by turning it into a
switch expression. In this form, the switch will evaluate to the expression
that follows the matching case. Keep in mind that the default label then
becomes mandatory so that all possible input values result in a valid
expression.

String result = switch (x)
{

case 1 -> "one";
case 2, 3 -> "two or three";
default -> "many";

}s

If more than one expression is needed, a full code block can be
included. In such a block, the yield statement is used to specify the value
that the switch expression will evaluate to.

String result = switch (x)
{

case 1 -> "one";

34

CHAPTER 7 CONDITIONALS

case 2, 3 -> "two or three";
default -> {
if (x == 4) yield "four";
else yield "many";
}
};

Ternary Operator

The ternary operator (?:) can replace a single if-else clause with a value
to be returned. The operator takes three expressions. If the first one is
evaluated to true, then the second expression is returned, but if it’s false,
the third one is evaluated and returned. It is the only operator in Java
which accepts three operands.

X = (x <0.5) 20 : 1; // ternary operator (?:)
This ternary statement is equivalent to the following if-else clause:

if (x <0.5) {x=0;}
else { x = 1; }

35

CHAPTER 8

Loops

There are four looping structures in Java. They're used to execute a specific
code block multiple times. As with the conditional if statement, the curly
brackets for the loops can be left out if there’s only one statement in the
code block.

While Loop

The while loop runs through the code block only if the specified condition
is true and will continue looping for as long as the condition remains true.

The following loop will print out the numbers 0 to 4:
int i = 0;
while (i < 5) {
System.out.print(i++); // "01234"
}

Note that the condition for the loop must evaluate to a boolean value.
This condition is checked only at the start of each iteration (loop).

© Mikael Olsson 2022 37
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_8

https://doi.org/10.1007/978-1-4842-7371-5_8

CHAPTER 8 LOOPS

Do While Loop

The do while loop works the same way as the while loop, except that
it checks the condition after the code block. It will therefore always run
through the code block at least once.

int i = 0;
do {
System.out.print(i++);
} while (i < 5); // "01234"

For Loop

The for loop is used to go through a code block a specific number of times.
It uses three parameters. The first parameter initializes a counter and is
always executed once, before the loop. This counter variable is limited

in scope to the for loop and is not accessible after the loop. The second
parameter holds the condition for the loop and is checked before each
iteration. Lastly, the third parameter contains the increment of the counter
and is executed at the end of each iteration.

for (int i = 0; 1 < 5; i++) {
System.out.print(i); // "01234"
}

Several variations of the for loop are possible. For instance, the first
and third parameters can be split into several statements using the comma
operator.

for (int k = 0, m = 0; k < 5; k++, m--) {
System.out.print(k + m); // "00000"
}

38

CHAPTER 8 LOOPS

You also have the option of leaving out one or more of the parameters.
For example, the third parameter can be moved into the body of the loop.

for (int k =0, m=0; k < 5;) {
System.out.print(k + m); // "00000"
k++; m--;

}

For Each Loop

The “for each” loop provides an easy way to iterate through arrays. On
each iteration, the next element in the array is assigned to the specified
variable, and the loop continues to execute until it has gone through the
entire array.

int[] array = { 1,2,3 };
for (int element : array) {
System.out.print(element); // "123"

}

Break and Continue

There are two special keywords that can be used inside loops: break and
continue. The break keyword ends the loop structure, and continue
skips the rest of the current iteration and continues at the beginning of
the next iteration.

for (int i = 0; i < 10; i++)

{
if (i == 5) break; // end loop
if (i == 3) continue; // start next iteration
System.out.print(i); // "0124"

}

39

CHAPTER 8 LOOPS

To break out of a loop above the current one, that loop must first be
labeled by adding a name followed by a colon before it. With this label in
place, it can now be used as an argument to the break statement, telling it
which loop to break out of. This also works with the continue keyword in
order to skip to the next iteration of the named loop.

myLoop: for (int i = 0; i < 10; i++)

{
for (int j = 0; j < 10; j++)
{
break myLoop; // end outer for loop
}
}

Labeled Block

A labeled block, also called a named block, is created by placing a label
before an anonymous code block. The break keyword can be used to
break out of such a block, just as in labeled loops. This could be useful, for
example, when performing a validation, where if one validation step fails,
the whole process must be aborted.

validation:
{
if(true)
break validation;

Labeled blocks can be useful for organizing a large method into
sections. In most cases, splitting the method up is a better idea. But if the
new method would require a lot of parameters, or if the method would
only be used from a single location, then one or more labeled blocks may
be preferable.

40

CHAPTER 9

Methods

Methods are reusable code blocks that only execute when called.

Defining Methods

You can create a method by typing a return type followed by the method’s
name, a set of parentheses, and a code block. The void keyword can

be used to specify that the method won'’t return a value. The naming
convention for methods is the same as for variables—a descriptive name
with the first word in lowercase and the first letter of any subsequent words
capitalized.

class MyApp

{
void myPrint()

{
System.out.println("Hello");

}
}

© Mikael Olsson 2022 41
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_9

https://doi.org/10.1007/978-1-4842-7371-5_9

CHAPTER9 METHODS

Calling Methods

The preceding method will simply print out a text message. To invoke (call)
it from the main method, an instance of the MyApp class must be created
first. The dot operator is then used after the instance’s name in order to
access its members, which include the myPrint method.

public static void main(String[] args)

{
MyApp m = new MyApp();
m.myPrint(); // "Hello"

}

Method Parameters

The parentheses that follow the method name are used to pass arguments
to the method. To do that, the corresponding parameters must first be
added to the method declaration in the form of a comma-separated list.

void myPrint(String s)
{
System.out.println(s);

}

A method can be defined to take any number of arguments, and they
can have any data types. Just ensure that the method is called with the
same types and number of arguments in the correct order.

public static void main(String[] args)

{
MyApp m = new MyApp();
m.myPrint("Hello"); // "Hello"

}

42

CHAPTER9 METHODS

To be precise, parameters appear in method definitions, whereas
arguments appear in method calls. However, the two terms are sometimes
mistakenly used interchangeably.

Return Statement

A method can return a value. The void keyword is then replaced with the
data type the method will return, and the return keyword is added to the
method body with an argument of the specified return type.

public class MyApp

{
String getString()
{
return "Hello";
}
}

Returnis a jump statement that causes the method to exit and return
the specified value to the place where the method was called. For example,
the preceding method can be passed as an argument to the println
method because the method evaluates to a string.

public static void main(String[] args)

{
MyApp m = new MyApp();
System.out.println(m.getString()); // "Hello"

}

43

CHAPTER9 METHODS

The return statement can also be used in void methods to exit before
the end block is reached. When used in this context, no return value is
specified.

void myPrint(String s)

{
if (s == "") { return; } // skip if string is empty
System.out.println(s);

}

Method Overloading

It’s possible to declare multiple methods with the same name as long

as the parameters vary in type or number. Called method overloading,

this can, for example, be seen in the implementation of the System.out.
println method. It’s a powerful feature that allows a method to handle a
variety of arguments without the programmer needing to be aware of using
different methods.

void myPrint(String s)
{
System.out.println(s);

}

void myPrint(int i)
{
System.out.println(i);

}

44

CHAPTER9 METHODS

Passing Arguments

Java is different from many other languages in that all method parameters
are passed by value. In fact, they can’t be passed by reference. For value
data types (primitive types), that means only a local copy of the variable

is changed within the method, so the change won't affect the original
variable. For reference data types (classes, interfaces, and arrays), it means
only a copy of the memory address is passed to the method. Therefore, if
the entire object is replaced, the change won’t propagate back to the caller,
but changes to the object will affect the original since the copy points to
the same memory location.

public class MyApp

{

public static void main(String[] args)

{
MyApp m = new MyApp();
int x = 0; // value data type
m.set(x); // value is passed
System.out.println(x); /7 "0"
int[] y = {0}; // reference data type
m.set(y); // address is passed
System.out.println(y[0]); // "10"

}

void set(int a) { a = 10; }
void set(int[] a) { a[o] = 10; }
}

45

CHAPTER 10

Class

A class is a template used to create objects. Classes are made up of
members, the main two of which are fields and methods. Fields are
variables that hold the state of the object, whereas methods define what the
object can do—the so-called behaviors of the object.

class MyRectangle
{

int x, y;

int getArea() { return x * y; }
}

Object Creation

To access a (non-static) field or method from outside the defining class, an
object of the class must first be created. That’s done using the new keyword,
which will create a new object in the system’s memory.

public class MyApp
{

public static void main(String[] args)
{
// Create an object of MyRectangle
MyRectangle r = new MyRectangle();

}
}

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_10

https://doi.org/10.1007/978-1-4842-7371-5_10

CHAPTER 10 CLASS

An object is also called an instance. The object will contain its own set
of instance variables (non-static fields), which can hold values that are
different from those of other instances of the class.

Accessing Object Members

In addition to creating the object, the members of the class that are to be
accessible beyond their package need to be declared as public in the class
definition.

class MyRectangle

{
public int x, y;
public int getArea() { return x * y; }

}

The members of this object can now be reached by using the dot
operator after the instance name:

public class MyApp
{

public static void main(String[] args)

{
MyRectangle r = new MyRectangle();

r.x = 10;
r.y = 5;
int area = r.getArea(); // 50 (5*10)

48

CHAPTER 10 CLASS

Constructor

A class can have a constructor, a special kind of method used to instantiate
(construct) the object. It always has the same name as the class and
doesn’t have a return type, since it implicitly returns a new instance of the
class. To be accessible from another class not in its package, it needs to

be declared with the public access modifier. When a new instance of the
MyRectangle class is created using the new syntax, the constructor method
is called, which in the following example sets the fields to the specified
default values.

class MyRectangle
{

int x, y;
public MyRectangle() { x = 10; y = 20; }
}

The constructor can have a parameter list, like any other method. As
shown in the following code, this can be used to make the fields’ initial
values depend on the parameters passed when the object is created.

class MyRectangle
{

int x, y;
public MyRectangle(int a, int b) { x = a; y = b; }
}

public class MyApp

{
public static void main(String[] args)
{
MyRectangle r = new MyRectangle(20, 15);
}
}

49

CHAPTER 10 CLASS

This Keyword

Inside the constructor, as well as in other methods belonging to the object,
a special keyword called this can be used. The this keyword is a reference
to the current instance of the class. If, for example, the constructor’s
parameters have the same names as the corresponding instance variables,
then the instance variables could still be accessed by using the this
keyword, even though they're overshadowed by the parameters.

class MyRectangle

{
int x, y;
public MyRectangle(int x, int y)
{
this.x = x;
this.y = y;
}
}

Constructor Overloading

To support different parameter lists, the constructor can be overloaded. In
the following example, if the class is instantiated without any parameters,
the fields will be assigned the specified default values. With one parameter,
both fields will be set to the supplied value, and with two parameters, each
field will be assigned a separate value.

class MyRectangle
{

int x, y;
public MyRectangle() { x

10; y = 20; }

50

CHAPTER 10 CLASS

public MyRectangle(int a) {x=a vy

Il
Y]
. - e
—

public MyRectangle(int a, int b) { x
}

Il
%)
-
<
Il
on
-
—

Attempting to create an object with the wrong number of arguments
or with incorrect data types will result in a compile-time error, just as with
any other method.

Constructor Chaining

You can also use the this keyword to call one constructor from another.
Known as constructor chaining, this allows for greater code reuse. Note that
the keyword appears as a method call and that it must be on the first line in
the constructor.

public MyRectangle() { this(10, 20); }
public MyRectangle(int a) { this(a, a); }
public MyRectangle(int a, int b) { x = a; y = b;

Initial Field Values

If there are fields in the class that need to be assigned default values, such
as in the first constructor just shown, the fields can simply be assigned at
the same time as they are declared. These initial values will be assigned
before the constructor is called.

class MyRectangle
{

int x = 10, y = 20;

}

51

CHAPTER 10 CLASS

Default Constructor

It’s possible to create a class even if no constructors are defined.
That'’s because the compiler will then automatically create a default
parameterless constructor.

public class MyApp
{

public static void main(String[] args)

{

// Default constructor used
MyApp a = new MyApp();
}
}

If any custom constructor is defined, the default parameterless
constructor will not be added by the compiler.

The built-in constant null is used to represent an uninitialized object. It
can only be assigned to objects and not to variables of primitive types. The
equal-to operator (==) can be used to test whether an object is null.

String s = null;
/...
if (s == null) s = new String();

52

CHAPTER 10 CLASS

Default Values

The default value of an object is null. For primitive data types, the
default values are as follows: integer types become 0, floating-point
types become 0.0, a char has the Unicode character for zero (\0000),
and a Boolean is false. Default values will be automatically assigned
by the compiler, but only for fields and not for local variables. However,
explicitly specifying the default value for fields is considered good
programming because it makes the code easier to understand. For local
variables, the default values aren’t set by the compiler. Instead, the
compiler forces the programmer to assign values to any local variables
that are used so as to avoid problems associated with mistakenly using

unassigned variables.

public class MyApp
{

int x; // field is assigned default value 0

int dummy() {
int x; // local variable must be assigned if used
}
}

Garbage Collector

The Java runtime environment has a garbage collector that periodically
releases the memory used by objects when they’re no longer needed.
This frees the programmer from the often tedious and error-prone task
of memory management. An object will be eligible for destruction when
there are no more references to it. This occurs, for example, when the
object goes out of scope. An object can also be explicitly dropped by
setting its references to null.

53

CHAPTER 10 CLASS

public class MyApp
{

public static void main(String[] args)

{
MyApp a = new MyApp();

// Make object available for garbage collection
a = null;

54

CHAPTER 11

Static

The static keyword is used to create fields and methods that can be
accessed without having to make an instance of the class. Static (class)
members only exist in one copy, which belongs to the class itself, whereas
instance (non-static) members are created as new copies for each new
object. That means static methods can’t use instance members because
these methods aren’t part of an instance. On the other hand, instance
methods can use both static and instance members.

class MyCircle

{

float r = 10; // instance field
static float pi = 3.14F; // static/class field

// Instance method
float getArea() { return newArea(r); }

// Static/class method
static float newArea(float a) { return pi*a*a; }

© Mikael Olsson 2022 55
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_11

https://doi.org/10.1007/978-1-4842-7371-5_11

CHAPTER 11 STATIC

Accessing Static Members

To access a static member from outside the class, the class name is used
followed by the dot operator. This operator is the same as the one used

to access instance members, but to reach them, an object reference is
required. Trying to access a static member by using an object reference
(instead of the class name) will result in a warning since this makes it more
difficult to see that a static member is being used.

public static void main(String[] args)
{

float f = MyCircle.pi;

MyCircle c = new MyCircle();

float g = c.1;
}

Static Methods

The advantage of static members is that they can be used by other classes
without having to create an instance of the class. Fields should therefore
be declared static when only a single instance of the variable is needed.
Methods should be declared static if they perform a generic function that’s
independent of any instance variables. A good example of this is the Math
class which contains only static methods and fields.

double pi = Math.PI;

Math is one of the classes that’s included by default in every Java
application, because it belongs to the java.lang package, which is always
imported. This package contains classes fundamental to the Java language,
such as String, Object, and System.

56

CHAPTER 11 STATIC

Static Fields

Static fields have the advantage of persisting throughout the life of the
application. That means they can be used, for example, to record the
number of times a method has been called across all instances of the class.
The initial value for a static field will only be set once, sometimes before
the class or field is ever used.

class MyCircle

{

static void foo() { count++; }
static int count = 0;

}

Static Initialization Blocks

A static initialization block can be used if the initialization of static fields
requires more than one line or some other logic. This block, in contrast to
the constructor, will only be run once, at the same time as the static fields
are initialized.

class MyClass
{

static int[] array = new int[5];

// Static initialization block
static

{
int 1 = 0;
for(int element : array)
element = i++;

57

CHAPTER 11 STATIC

Instance Initialization Blocks

An initialization block provides an alternative method for assigning
instance fields. This block is placed on the class level, just like the static
initialization block, but without the use of the static keyword. Any code
placed between the brackets will be copied to the start of every constructor
by the compiler.

class MyClass
{

int[] array = new int[5];

// Initialization block
{
int i = 0;
for(int element : array) element = i++;
}
}

A class can have multiple instance initialization and static
initialization blocks.

58

CHAPTER 12

Inheritance

Inheritance allows a class to acquire the members of another class. In the
following example, Apple inherits from Fruit. This is specified with the
extends keyword. Fruit then becomes the superclass of Apple, which in
turn becomes a subclass of Fruit. In addition to its own members, Apple
gains all accessible members in Fruit, except for any constructors.

// Superclass (parent class)
class Fruit

{
public String flavor;

}

// Subclass (child class)
class Apple extends Fruit

{

public String variety;

}

A class in Java may only inherit from one superclass, and if no class is
specified, it will implicitly inherit from Object. Therefore, Object is the
root class of all classes.

// Same as class MyClass {}
class MyClass extends Object {}

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_12

https://doi.org/10.1007/978-1-4842-7371-5_12

CHAPTER 12 INHERITANCE

Upcasting

Conceptually, a subclass is a specialization of the superclass. This means
that Apple is a kind of Fruit, as well as an Object, and can therefore be
used anywhere a Fruit or Object is expected. For example, if an instance
of Apple is created, it can be upcast to Fruit because the subclass contains
everything in the superclass.

new Apple();
a;

Apple a
Fruit

Through this variable, the Apple is seen as a Fruit, so only the Fruit
members can be accessed:

f.flavor = "Sweet";

Downcasting

When the class is downcast back into an Apple, the fields that are

specific to Apple will have been preserved. That’s because the Fruit only
contained the Apple—it didn’t convert it to an Apple. The downcast has to
be made explicitly using the Java casting format because downcasting an
actual Fruit object into an Apple isn’t allowed.

Apple b = (Apple)f;

Instanceof Operator

As a safety precaution, you can make a test during runtime to see whether
an object can be cast to a specific class by using the instanceof operator.
This operator returns true if the left side object can be cast into the right
side type without causing an exception.

60

CHAPTER 12 INHERITANCE

if (f instanceof Apple)

{
Apple myApple = (Apple)f;
// use myApple here

}

It is common to use the instanceof operator like this, where the
condition check is followed by a type cast. For this reason, a more concise
syntax was added where the assigned variable is included in the condition.
The scope of the variable is limited to the conditional block only.

if (f instanceof Apple myApple)

{
// use myApple here

}

This is part of the pattern matching feature of the instanceof operator,
which became a preview feature in Java 14 and then a standard feature in
Java 16. The operator was extended to take not just a type but to also allow
a type to be extracted and tested within a single expression.

class Speed

{

public int velocity = 10;

}

public class MyApp
{
public static void main(String[] args) {
Object o = new Speed();
/1 ...
if ((o instanceof Speed s) &% (s.velocity > 5)) {
System.out.println("Speed is " + s.velocity);

61

CHAPTER 12 INHERITANCE

Pattern Matching Switch

Java 17 added pattern matching for switch statements and expressions as

a preview feature. This extends switch to work with any type pattern, and
not just numeric, String, and enum types as was previously the case. When
using case labels with patterns, the selection is determined by pattern
matching rather than by an equality check. In the following code, the value
of the object variable matches the Long pattern, and the code associated
with that case will be executed.

Object o = 5L; // L suffix means Long type
String myType = switch(o)

{
case null -> "null";
case Integer i -> "integer is " + i;
case Long 1 -> "long is " + 1;
default -> o.toString();

}

System.out.println(myType) // "long is 5"

Restricting Inheritance

A class can be declared as final to prevent any class from inheriting it:

// Cannot be inherited
final class Fruit {}

A less restrictive method is to use the sealed modifier to only allow
inheritance by certain classes. These classes are specified in a comma-
separated permits clause placed to the right of any extends clause.

// Can be inherited only by Apple or Orange
sealed class Fruit permits Apple, Orange {}

62

CHAPTER 12 INHERITANCE

Permitted classes that inherit from a sealed class must in turn be
declared as non-sealed, sealed, or final. A non-sealed class may be
inherited by any class, whereas a final class allows for no more subclasses.

// Can be inherited by any class
non-sealed class Lemon extends Fruit{}

// Can be inherited only by RedDelicious class
sealed class Apple extends Fruit permits RedDelicious{}

// Cannot be inherited
final class Orange extends Fruit {}

Sealed classes were added as a preview feature in Java 15. Both
the sealed and final modifiers may also be applied to interfaces and
abstract classes.

63

CHAPTER 13

Overriding

A member in a subclass can redefine a member in its superclass. This is

most often done to give instance methods new implementations.

Overriding Methods

In the following example, Rectangle’s getArea method is overridden in
Triangle by redeclaring it there with the same method signature. The
signature includes the name, parameters, and return type of the method.
However, the access level may be changed to allow for more access than
the method being overridden.

class Rectangle

{
public int w = 10, h = 10;
public int getArea() { return w * h; }

}

class Triangle extends Rectangle

{
public int getArea() { returnw * h / 2; }

}

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_13

https://doi.org/10.1007/978-1-4842-7371-5_13

CHAPTER 13 OVERRIDING

Override Annotation

To show that this override was intentional, the @0verride annotation
should be placed before the method. This annotation was added in Java 5
to prevent accidental overrides and to improve readability. The compiler
will also give a warning if the annotated method doesn’t actually override
anything, which can occur if the signature does not match the method in
the parent class.

class Triangle extends Rectangle
{
@verride
public int getArea() {
return w * h / 2;
}
}

Invoking the getArea method from a Triangle instance will call
Triangle’s version of the method:

Triangle o = new Triangle();
o.getArea(); // (50) calls Triangle's version

If Triangle’s instance is upcast into Rectangle, then Triangle’s
version of the method will still get called because Rectangle’s version has
been overridden:

Rectangle o = new Triangle();
o.getArea(); // (50) calls Triangle's version

66

CHAPTER 13 OVERRIDING

Hiding Methods

This is only true for instance methods—not for class (static) methods.

If a class method called newArea is added to Rectangle and redefined
in Triangle, then Triangle’s version of the method will only hide
Rectangle’s implementation. Because of this, the @verride annotation
isn’t used.

class Rectangle
{
public int w = 10, h = 10;
public static int newArea(int a, int b) {
return a * b;
}
}

class Triangle extends Rectangle
{
public static int newArea(int a, int b) {
return a * b / 2;

}
}

Calling newArea from Triangle’s class will, as expected, invoke
Triangle’s version, but calling the method from Rectangle’s class will
invoke Rectangle’s implementation:

Triangle o = new Triangle();
Triangle.newArea(10,10); // (50) calls Triangle's version

Rectangle r = o;
Rectangle.newArea(10,10); // (100) calls Rectangle's version

67

CHAPTER 13 OVERRIDING

Redefined instance methods will always be overridden in Java, and
redefined class methods will always be hidden. There’s no way to change
this behavior, as can be done in C++ or C#, for example.

Hiding Fields

Fields cannot be overridden in Java, but they can be hidden by declaring
a field with the same name as an inherited field. The type of the field and
its access level can be different from the inherited field. It is generally not
advisable to hide fields, as it makes the code more difficult to read.

class Rectangle

{
public int w = 10, h = 10;
}
class Triangle extends Rectangle
{
public int w = 5, h = 5; // hide inherited fields
}
public class MyApp
{
public static void main(String args[]) {
Triangle t = new Triangle();
Rectangle r = t;
System.out.println(t.w); // "5"
System.out.println(r.w); // "10"
}
}

68

CHAPTER 13 OVERRIDING

Accessing Redefined Members

An overridden method (or hidden instance field) can still be accessed from
inside the subclass using the super keyword. This keyword is a reference to
the current instance of the superclass.

class Triangle extends Rectangle
{
@verride
public int getArea() {
return super.getArea() / 2;
}
}

Calling Parent Constructor

Another place where the super keyword can be used is on the first line
of a constructor. There it can perform a method call that invokes the
superclass’s constructor.

public Triangle(int a, int b) { super(a,b); }

If the first line of a constructor isn’t a call to another constructor,
the Java compiler will automatically add a call to the superclass’s
parameterless constructor. That ensures that all ancestor classes are
properly constructed.

public Triangle() { super(); }

69

CHAPTER 14

Packages and Import

Packages are used to avoid naming conflicts and to organize code files into
different directories. So far in this book, the code file has been located at
the root of the project’s source directory and has therefore belonged to the
so-called default package. In Java, the directory a file belongs to, relative to
the project’s source directory, corresponds to the package name.

To assign a code file to a package—for example, mypackage—it
must be moved to a folder by that name, under the project directory.
Furthermore, the file must specify which package it belongs to using the
package keyword followed by the package name (and path). There may
only be one package statement in each source file, and it must be the first
line of code, except for any comments. Note that the naming convention
for packages is all lowercase.

// This file belongs to mypackage
package mypackage;

Packages may be any number of directory levels deep, and the levels in
the hierarchy are separated by dots. For example, if the mypackage folder
containing the code file is placed in a project folder called sub, the package
declaration would need to look like this.

package sub.mypackage;

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_14

https://doi.org/10.1007/978-1-4842-7371-5_14

CHAPTER 14 PACKAGES AND IMPORT

Accessing Packages

To illustrate how to access package members, a file named MyClass.java is
placed in the sub\mypackage folder under the project’s source directory.
The file contains a single public class called MyClass.

package sub.mypackage;
public class MyClass {}

MyClass can be accessed from another source file in one of two ways.
The first way is to type the fully qualified name.

// Fully qualified class name
sub.mypackage.MyClass m;

The second option is to shorten the fully qualified name by including
the class with the import keyword. An import statement must be located
after the package declaration statement and before all other members in
the code file. It has no other purpose than to free the programmer from
having to type the fully qualified name.

import mypackage.sub.MyClass;
/...
MyClass m;

In addition to importing a specific class, all types (classes or interfaces)
inside of a package can be imported by using an asterisk (*). Note that this
doesn’t import any subpackages.

import java.util.*;

72

CHAPTER 14 PACKAGES AND IMPORT

A third variation of the import statement is the static import, which
imports all static members of a class. Once the static members are
imported, they can be used without having to specify the class name.

import static java.lang.Math.*;
/1 ..

double pi = PI; // Math.PI

73

CHAPTER 15

Modules

A module is a reusable group of related packages and resource files
together with a module descriptor file. They should be self-sufficient and
only expose interfaces to use the module’s functionality.

Creating a Module

NetBeans has a special project type for managing multiple modules.

To create such a project, go to File » New Project, and from there, select
Java Modular Project under the Java with Ant category. Click Next,

and give the project the name MyModules, and click Finish to create

the project. Go ahead and add a module named “firstmodule” to this
project by right-clicking the MyModules item in the Projects window and
selecting New » Module.

As can be seen in the Projects window, a module has a special file
named module-info.java. This module descriptor file must be located in
the root folder of the packages that will be compiled into a module. Inside
the file is a module descriptor, which consists of the module keyword
followed by the name of the module and a set of curly brackets.

module firstmodule {

}

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_15

https://doi.org/10.1007/978-1-4842-7371-5_15

CHAPTER 15 MODULES

Next, let’s create a package with a class to include in this module.
Right-click the “firstmodule” item in the Project window, and select New
» Java Class. Give it the name util. MyClass to automatically place it in a
new Package called util. The package is mandatory since placing files other
than the module descriptor in the default package (top-level directory)
is not allowed in modules. Type the following code sample into the new
source file:

// util.MyClass.java
package util;
public class MyClass {
public static void sayHi() {
System.out.println("Hello Module");
}
}

Go back to the module descriptor file, and add an export statement for
the util package using the exports keyword followed by the fully qualified
package name (firstmodule.util). This will make the package visible to any
other modules that are using this module. Any other packages, including
subpackages, which are not explicitly exported will be inaccessible from
outside of the module.

module firstmodule {
exports firstmodule.util; // make package visible

}

76

CHAPTER 15 MODULES

Using a Module

We will now create a second module to make use of the first module. Add a
new module to the project called secondmodule. In its module descriptor
file, import firstmodule to make its exported package visible within this
new module.

module secondmodule {
requires firstmodule; // import module

}

Add a class called app.MyApp to the module, so the class file gets
placed in a package called app. Include the following code inside this file
which makes use of the util package exposed from the first module:

// app.MyApp.java
package app;
public class MyApp {
public static void main(String[] args) {
util.MyClass.sayHi(); // "Hello Module"

}
}

This is all the code needed to make the second module use the
functionality exposed by the first module. Compile and run the project to
have the main method call the function from the imported module, which
displays the “Hello Module” text string.

77

CHAPTER 16

Access Levels

There are four access levels available in Java: public, protected, private,
and package-private. Package-private isn’t explicitly declared using a
keyword. Instead, it’s the default access level for every member in Java.

public int myPublic; // unrestricted access

protected int myProtected;// package or subclass access
int myPackage; // package access

private int myPrivate; // class access

Private Access

All members, regardless of access level, are accessible in the class in which
they are declared—the containing class. This is the only place where a

private member can be accessed.

package mypackage;
public class MyApp
{
public int myPublic;
protected int myProtected;
int myPackage;
private int myPrivate;

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_16

https://doi.org/10.1007/978-1-4842-7371-5_16

CHAPTER 16 ACCESS LEVELS

void test()

{
myPublic = 0; // allowed
myProtected = 0; // allowed
myPackage = 0; // allowed
myPrivate = 0; // allowed
}
}

Package-Private Access

Package-private members can be accessed anywhere within the
containing package, but not from another package:

package mypackage;
public class MyClass

{
void test(MyApp m)
{
m.myPublic = 0; // allowed
m.myProtected = 0; // allowed
m.myPackage = 0; // allowed
m.myPrivate = 0; // inaccessible
}
}

80

CHAPTER 16 ACCESS LEVELS

Protected Access

Protected members are accessible within subclasses and within the
containing package. In the following code, the protected member can be
accessed because MyChild it is a subclass of MyApp which defines that
member:

package newpackage;
import mypackage.MyApp;

public class MyChild extends MyApp

{
void test()
{
myPublic = 0; // allowed
myProtected = 0; // allowed (in subclass)
myPackage = 0; // inaccessible
myPrivate = 0; // inaccessible
}
}

Note that in addition to subclasses, protected members are also
accessible anywhere within the containing package. This behavior is
different from other languages, such as C++ and C#, where protected
members are only accessible from subclasses and the containing class.

package mypackage;
public class MyTest

{
void test(MyApp m)
{
m.myPublic = 0; // allowed
m.myProtected = 0; // allowed (same package)

81

CHAPTER 16 ACCESS LEVELS

m.myPackage 0; // inaccessible

m.myPrivate
}
}

0; // inaccessible

Public Access

The public modifier gives unrestricted access from anywhere the member
can be referenced:

package newpackage;
import mypackage.MyApp;

public class MyClass

{
void test(MyApp m)
{
m.myPublic = 0; // allowed
m.myProtected = 0; // inaccessible
m.myPackage = 0; // inaccessible
m.myPrivate = 0; // inaccessible
}
}

82

CHAPTER 16 ACCESS LEVELS

Top-Level Access

Members declared directly in the package—top-level members—may only
choose between package-private and public access. For instance, a top-level
class without an access modifier will default to package-private. Such a class
will only be accessible within the containing package. In contrast, a top-level
class explicitly declared as public can be reached from other packages as well.

// Accessible only from containing package
class PackagePrivateClass {}

// Accessible from any package
public class PublicClass {}

Nested Class Access

Java allows classes to be defined within other classes, and these are called
nested classes. Such a class can have any one of the four access levels. If a
nested class is made inaccessible, it can’t be instantiated or inherited.

public class MyClass

{
// Only accessible within MyClass

private class PrivateNestedClass {}

}

Keep in mind that nested members can be restricted by both their own
access level and that of the containing class. For instance, a public nested class
inside of a package-private class won’t be accessible from other packages.

class MyClass
{

// Only accessible within containing package
public class PrivateNestedClass {}

}

83

CHAPTER 16 ACCESS LEVELS

Access-Level Guideline

As a guideline, when choosing an access level, it’s generally best to use
the most restrictive level possible. That’s because the more places a
member can be accessed, the more places it can be accessed incorrectly,
which makes the code harder to debug. Using restrictive access levels also
makes it easier to modify the class without breaking the code for any other
developers using that class.

84

CHAPTER 17

Constants

A variable in Java can be made into a constant by adding the final
keyword before the data type. This modifier means that the variable can’t
be reassigned once it’s been set, and any attempts to do so will result in a
compile-time error.

Local Constants

Alocal variable can instead be declared as a constant by applying the final
keyword. Such a constant must always be initialized at the same time as it’s
declared. The Java naming convention for constants is to use all uppercase
letters and to separate words with underscores.

final double PI = 3.14;

Constant Fields

Class and instance variables can be declared as final, as seen in the
following example:

class MyClass
{
final double E = 2.72;
static final double C = 3e8;
final static double D = 1.23; // alternative order

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_17

https://doi.org/10.1007/978-1-4842-7371-5_17

CHAPTER 17 CONSTANTS

In contrast to local constants, constant fields don’t have to be assigned
at declaration. A constant instance field can optionally be assigned in
a constructor or an instance initialization block, whereas a constant
static field may be assigned by using a static initialization block. These
alternative assignments can be useful if the constant’s value needs to be
calculated and doesn’t fit on a single code line.

class MyClass

{
final double E;
final double PI;
static final double C;

public MyClass() { E = 2.72; }
{ PI = 3.14; }
static { C = 3e8; }

Constant Method Parameters

Another place where the final modifier may be applied is to method
parameters to make them unchangeable. Doing so provides a signal to
other developers that the method won’t modify the argument passed to it.

void f(final String A) {}

Compile-Time and Runtime Constants

Like most other languages, Java has both compile-time and runtime
constants. However, only class constants can be compile-time constants in
Java and only if their value is known at compilation. All other uses of final
will create runtime constants. With compile-time constants, the compiler

86

CHAPTER 17 CONSTANTS

will replace the constant name everywhere in the code with its value.
These are therefore faster than runtime constants, which aren’t set until
the program is run. Runtime constants, though, can be assigned dynamic
values that can be different from one program run to the next.

class MyClass

{
// Compile-time constant (static and known at compile-time)
final static double C = 3e8;

// Run-time constant (not static)
final double E = 2.72;

// Run-time constant (not known at compile-time)
final static int RND = (new
java.util.Random()).nextInt();

Constant Guideline

In general, it’s a good idea to always declare variables as final, and
constant fields as static final, if they don’t need to be reassigned. That
ensures that the fields and variables won’t be changed anywhere in the
program by mistake, which in turn helps prevent bugs.

87

CHAPTER 18

Interface

The interface type is used to specify methods that classes using the
interface must implement. These methods are created with the interface
keyword followed by a name and a code block. Their naming convention is
the same as for classes, with the first letter of each word capitalized.

interface MyInterface {}

When an interface isn’t nested inside another type, its access level can
be either package-private or public, just like any other top-level member.

Interface Members

The code block for an interface can, first of all, contain signatures for
instance methods. These methods don’t have any implementations.
Instead, their bodies are replaced by semicolons. Interface members have
public access by default, so this modifier can be left out.

interface MyInterface {
int myMethod(); // method signature

}

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_18

https://doi.org/10.1007/978-1-4842-7371-5_18

CHAPTER 18 INTERFACE

The second member that an interface can contain is constants. Any
field created in an interface will be implicitly declared as static final, so
these modifiers can also be left out.

interface MyInterface {
int ¢ = 10; // constant

}

In addition to method signatures and constants, an interface can also
contain nested containing types, such as classes or other interfaces:

interface MyInterface

{
// Types

class Class {}
interface Interface {}
enum Enum {}

Interface Example

The following example shows an interface called Comparable, which has a
single method named compare:

interface Comparable

{

int compare(Object o);

}

90

CHAPTER 18 INTERFACE

The following class implements this interface using the implements
keyword after the class name. By convention, the implements clause is
placed after the extends clause if the class has one. Note that although a
class can only inherit from one superclass, it may implement any number

of interfaces by specifying them in a comma-separated list.

class Circle implements Comparable
{

public int r;

/1 ...

Because Circle implements Comparable, it must define the compare
method. For this class, the method will return the difference between the
circle radiuses. The implemented method must be public and must have
the same signature as the method defined in the interface.

class Circle implements Comparable

{
public int r;
@verride
public int compare(Object o) {
return r - ((Circle)o).r;
}
}

Functionality Interface

Comparable demonstrates the first use of interfaces, which is to define a
specific functionality that classes can share. It makes it possible to use

the interface members without having to know the actual type of a class,
a concept called polymorphism. To illustrate, the next example shows a

91

CHAPTER 18 INTERFACE

simple method that takes two Comparable objects and returns the largest
one. This method will work for any class that implements the Comparable
interface because the method only uses the functionality exposed through
that interface.

public static Object largest(Comparable a, Comparable b)
{

return (a.compare(b) > 0) ? a : b;

}

Class Interface

A second way to use an interface is to provide an actual interface for a
class, through which the class can be used. The following example defines
an interface for MyClass called MyInterface. This interface only includes
the functionality that programmers using MyClass may need.

interface MyInterface

{

void exposed();

}

class MyClass implements MyInterface

{

@Override
public void exposed() {}
public void hidden() {}

}

92

CHAPTER 18 INTERFACE

The interface type is then used to hold the implementing class, so the
class is only seen through this interface:

public static void main(String[] args)
{
MyInterface i = new MyClass();

}

This abstraction provides two benefits. First, it makes it easier
for other programmers to use the class because they now only have
access to the methods that are relevant. Second, it makes the class
more flexible because its implementation can change, without being
noticeable by other programmers using the class, as long as the
interface is followed.

Interface Classes

As mentioned, an interface can contain nested types, such as classes. In
contrast to methods, these types are implemented inside the interface.
This can, for example, be used to provide a class that contains static
methods useful for implementing classes. These nested types are only
visible to classes implementing the interface and not to objects of those
classes.

interface MyInterface

{
class HelperClass {

public static void helperMethod() {}
}
}

93

CHAPTER 18 INTERFACE

Default Interface Methods

Java 8 added the ability to define default methods in interfaces. Such a
method is specified using the default keyword and can then include an
implementation inside the interface.

interface MyInterface
{
default void defaultMethod() {
System.out.println("default");
}
}

A default method will be used unless it’s overridden by an
implementing class. This provides a backward-compatible way to add
new methods to an interface without breaking existing classes that use the

interface.

public class MyApp implements MyInterface
{
public static void main(String[] args) {
MyInterface i = new MyApp();
i.defaultMethod(); // "default"

}
}

Static Interface Methods

Another feature introduced in Java 8 was static interface methods. Similar
to static class methods, these methods belong to the interface and can only
be called from an interface context.

94

CHAPTER 18 INTERFACE

interface MyInterface
{
public static void staticMethod() {
System.out.println("static");
}
}

class MyApp
{
public static void main(String[] args) {
MyInterface.staticMethod(); // "static"
}
}

As of Java 9, static interface methods can have private access. This
enables lengthy default interface methods to be split across private static
interface methods, which allows for less code duplication.

interface MyInterface

{
private static String getString() {

return "string";

}

default void printString() {
System.out.println(getString());

}
}

95

CHAPTER 19

Abstract

An abstract class provides a partial implementation that other classes can
build upon. When a class is declared abstract, it means it can contain
incomplete methods that must be implemented in subclasses, in addition
to normal class members. These methods are left unimplemented and only
specify their signatures, while their bodies are replaced by semicolons.

abstract class Shape
{
public int x = 100, y = 100;
public abstract int getArea();
}

Abstract Class Example

If a class called Rectangle inherits from the abstract class Shape,
Rectangle is then forced to override the abstract getArea method. The
only exception is if Rectangle is also declared abstract, in which case it
doesn’t have to implement any abstract methods.

class Rectangle extends Shape
{
@0verride public int getArea() {
return x * y;
}
}

© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_19

https://doi.org/10.1007/978-1-4842-7371-5_19

CHAPTER 19 ABSTRACT

An abstract class can’t be instantiated, but it can be used to hold
instances of its subclasses:

public class MyApp
{
public static void main(String[] args) {
Shape s = new Rectangle();
}
}

Even though an abstract class can’t be instantiated, it may have
constructors, which can be called from the subclass’s constructors using
the super keyword:

abstract class Shape

{
public int x = 100, y = 100;
public Shape(int a, int b) {

X = a;
y = b;
}
}
class Rectangle extends Shape
{
public Rectangle(int a, int b) {
super(a,b);
}
}

98

CHAPTER 19 ABSTRACT

public class MyApp
{
public static void main(String[] args) {
Rectangle s = new Rectangle(5, 10);

}
}

Abstract Classes and Interfaces

Abstract classes are similar to interfaces in many ways. They can both
define method signatures that subclasses must implement, and neither
one of them can be instantiated. One key difference is that an abstract class
can contain any abstract or non-abstract member, whereas an interface is
limited to abstract members, nested types, and static constants, as well as
static methods, default methods, and private methods. Another difference
is that a class can implement any number of interfaces but only inherit
from one class, abstract or not.

An interface is either used to define a specific functionality that
a class can have or to provide an interface for other developers using
a class. In contrast, an abstract class is used to provide a partial class
implementation, leaving it up to subclasses to complete it. This is useful
when subclasses have some functionality in common but also have some
functionality that must be implemented differently for each subclass.

99

CHAPTER 20

Enum

An enumeration, or enum, is a type that consists of a fixed list of named
constants. To create one, the enum keyword is used followed by a name
and a code block containing a comma-separated list of constant elements.
The access level for an enum is the same as for a class. Package-private by
default, but it can also be set to public if it’s declared in a file of the same
name. As with classes, an enum can also be contained within a class,
where it can then be set to any access level.

enum Speed

{
STOP, SLOW, NORMAL, FAST

An object of the enum type just shown can hold any one of the four
defined constants. The enum constants are accessed as if they were static
fields of a class.

Speed s = Speed.SLOW;

The switch statement provides a good example of when an
enumeration can be useful. Compared to using ordinary constants, an
enum has the advantage of allowing the programmer to clearly specify

© Mikael Olsson 2022 101
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_20

https://doi.org/10.1007/978-1-4842-7371-5_20

CHAPTER 20 ENUM

what constant values are allowed. This provides compile-time type safety.
Note that when using an enum in a switch statement, the case labels
aren’t qualified with the name of the enum.

public class MyApp

{
public static void main(String args[]) {
Speed s = Speed.NORMAL;
/...
switch(s) {
case STOP: break;
case SLOW: break;
case NORMAL: break;
case FAST: break;
}
}
}

Enum Class

In Java, the enum type is more powerful than its counterparts in other
languages, such as C++ or C#. Essentially a special kind of class, it can
include anything a class can include. To add a class member, the list of
constants must be terminated with a semicolon, and the member must be
declared after the constants. In the following example, an integer is added
to the enum, which will hold the actual speed that the elements represent.

enum Speed

{
STOP, SLOW, NORMAL, FAST;

public int velocity;
/] ...

102

CHAPTER20 ENUM

To set this field, a constructor needs to be added as well. A constructor
in an enum is always private and isn’t called in the same way as for a
regular class. Instead, the parameters to the constructor are given after the
constant elements, as seen in the next example. If a Speed enum object
is assigned the constant SLOW, then the argument 5 will be passed to the
constructor for that enum instance.

enum Speed
{
STOP(0), SLOW(5), NORMAL(10), FAST(20);
public int velocity;
private Speed(int s) { velocity = s; }
}

public class MyApp
{
public static void main(String args[]) {
Speed s = Speed.SLOW;
System.out.println(s.velocity); // "5"
}
}

Another difference that enum types have when compared to regular
classes is that they implicitly extend from the java.lang.Enum class.
In addition to the members inherited from this class, the compiler will
also automatically add two static methods to the enumeration, namely,
values and valueof. The values method returns an array of the constant
elements declared in the enum, and valueof returns the enum constant of
the specified enum name.

Speed[] a = Speed.values();
String s = a[0].toString(); // "STOP"
Speed b = Speed.valueOf(s); // Speed.STOP

103

CHAPTER 21

Exception Handling

Exception handling allows programmers to deal with unexpected
situations that may occur in their programs. For example, the FileReader
class in the java.io package is used to open a file. Creating an instance of
this class will cause the IDE to give a reminder that the class’s constructor
may throw a FileNotFoundException. Attempting to run the program will
also cause the compiler to point this out.

import java.io.*;
public class MyClass
{

public static void main(String[] args)
{
// Compile-time error
FileReader file = new FileReader("missing.txt");

}
}

Try-Catch

To handle this compile-time error, the exception must be caught by using a
try-catch statement. This statement consists of a try block containing the
code that may cause the exceptions and one or more catch clauses. If the

© Mikael Olsson 2022 105
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_21

https://doi.org/10.1007/978-1-4842-7371-5_21

CHAPTER 21 EXCEPTION HANDLING

try block executes successfully, the program will continue running after
the try-catch statement, but if an exception occurs, execution will then be
passed to the first catch block able to handle that exception type.

try {
FileReader file = new FileReader("missing.txt");

}
catch(FileNotFoundException e) {}

Catch Block

In the preceding example, the catch block is only set to handle the
FileNotFoundException. If the code in the try block could throw more
kinds of exceptions, and all of them should be handled in the same way,

a more general exception can be caught instead, such as the Exception
class itself from which all exceptions derive. This catch clause would then
be able to handle all the exceptions that inherit from this class, including
the FileNotFoundException. Bear in mind that a more general exception
needs to be caught after a more specific exception. The catch clause must
always define an exception object. This object can be used to obtain more
information about the exception, such as a description of the exception
using the getMessage method.

catch(FileNotFoundException e) {
System.out.print(e.getMessage());

}
catch(Exception e) {

System.out.print(e.getMessage());
}

106

CHAPTER 21 EXCEPTION HANDLING

As of Java 7, multiple exceptions of different types can be caught using
a single catch block. This helps avoid code duplication, without having to
catch an overly general exception type, in cases when multiple exceptions
are to be handled in the same way. Each exception is separated with a
vertical bar (|) in the catch clause.

catch(IOException | SQLException e) {
// Handle exception

}

Finally Block

As the last clause in a try-catch statement, a finally block can be
added. This block is used to clean up resources allocated in the try
block and will always execute whether or not there’s an exception. In this
example, the file opened in the try block should be closed, but only if

it was successfully opened. To be able to access the FileReader object
from the finally clause, it must be declared outside of the try block.
Additionally, because the close method can also throw an exception, the
method needs to be surrounded with another try-catch block. Keep in
mind that if you forget to close a resource object, Java’s garbage collector
will eventually close the resource for you, but closing it yourself is good

programming practice.

FileReader file = null;

try {
file = new FileReader("missing.txt");

}
catch(FileNotFoundException e) {

System.out.print(e.getMessage());
}

107

CHAPTER 21 EXCEPTION HANDLING

finally {
if (file != null) {
try { file.close(); }
catch(IOException e) {}
}
}

Java 7 added the try-with-resources feature. This feature allows
resource objects to be automatically closed by defining the resource object
in parentheses after the try keyword. For this to work, the resource must
implement the java.lang.AutoClosable interface. This interface consists of
only the close method, which is called automatically in an implicit finally
statement. The preceding example can therefore be simplified as follows:

try(FileReader file = new FileReader("missing.txt")) {
// Read file

}

catch(FileNotFoundException e) {
// Handle exception

}

More than one resource object can be included for automatic closing,
separated with a semicolon. To improve readability, Java 9 made it possible for
objects declared outside of the parentheses to be referenced for the try-with-
resources statement, provided these resources are final or effectively final.

// Final resource
final FileReader filel = new FileReader("filei.txt");

// Effectively final resource (never changed)
FileReader file2 = new FileReader("file2.txt");

try(file1; file2) {
// Read files

108

CHAPTER 21 EXCEPTION HANDLING

catch(FileNotFoundException e) {
// Handle exception

}

Throwing Exceptions

When a situation occurs that a method can’t recover from, it can generate
its own exception to signal to the caller that the method has failed. It does
that using the throw keyword followed by a new instance of a Throwable

type.

static void makeException()

{
throw new Throwable("My Throwable");

}

Checked and Unchecked Exceptions

Exceptions in Java are grouped into two categories—checked and
unchecked—depending on whether or not they need to be specified. A
method that throws a checked exception—for example, I0Exception—will
not compile unless it’s specified using a throws clause after the method’s
parameter list and the calling method catches the exception. Unchecked
exceptions, on the other hand, such as the ArithmeticException, do not
have to be caught or specified. Note that to specify multiple exceptions, the
exception types are separated by a comma.

static void MakeException()
throws IOException, FileNotFoundException

{
/1 ...

109

CHAPTER 21 EXCEPTION HANDLING

throw new IOException("My IO exception");
/1 ...
throw new FileNotFoundException("File missing");

}

Exception Hierarchy

Exceptions, like most everything else in Java, are classes that exist in a
hierarchy. At the root of this hierarchy (below Object) is the Throwable
class, and all descendants of this class can be both thrown and caught.
Inheriting from Throwable are the Exror and Exception classes. Classes
descending from Exror are used to indicate non-recoverable exceptions,
such as the OutOfMemoryError. These are unchecked because once they've
occurred, it’s unlikely that the programmer can do anything about them
even if they’re caught.

Descending from Exception are the RuntimeExceptions, which
are also unchecked. These are exceptions that can occur in almost any
code, and it would therefore be cumbersome to catch and specify them.
For example, a division by zero will throw an ArithmeticException,
but surrounding every division operation with a try-catch would be
bothersome. There’s also some overhead associated with checking
for exceptions, and the cost of checking for these exceptions typically
outweighs the benefit of catching them. The other Exception descendants,
those that don’t inherit from RuntimeExceptions, are all checked. These
are exceptions that can be recovered from and that must be both caught
and specified

110

CHAPTER 22

Boxing and Unboxing

Placing a primitive variable in an object is known as boxing. Boxing
allows the primitive to be used where objects are required. For this
purpose, Java provides wrapper classes to implement boxing for each
primitive type—namely, Byte, Short, Integer, Long, Float, Double,
Character, and Boolean. An Integer object, for example, can hold a
variable of the type int.

int iPrimitive = 5;
Integer iWrapper = new Integer(iPrimitive); // boxing

The opposite of boxing is, naturally, unboxing, which converts the
object type back into its primitive type.

iPrimitive = iWrapper.intValue(); // unboxing

The wrapper classes belong to the java.lang package, which is always
imported. When using wrapper objects, keep in mind that the equal to
operator (==) checks whether both references refer to the same object,
whereas the equals method is used to compare the values that the objects

represent.
Integer x = new Integer(1000);
Integer y = new Integer(1000);
boolean b = (x == y); // false
b = x.equals(y); // true
© Mikael Olsson 2022 111

M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_22

https://doi.org/10.1007/978-1-4842-7371-5_22

CHAPTER 22 BOXING AND UNBOXING

Autoboxing and Autounboxing

Java 5 introduced autoboxing and autounboxing. These features allow for
automatic conversion between primitives and their wrapper objects.

Integer iWrapper = iPrimitive; // autoboxing
iPrimitive = iWrapper; // autounboxing

Note that this is only syntactic sugar designed to make the code easier
to read. The compiler will add the necessary code to box and unbox the
primitives for you, using the valueOf and intValue methods.

Integer iWrapper = Integer.valueOf(iPrimitive);
iPrimitive = iWrapper.intValue()

Primitive and Wrapper Guideline

Primitive types should be used when there’s no need for objects. That’s
because primitives are generally faster and more memory efficient than
objects. Conversely, wrappers are useful when numerical values are
needed but objects are required. For example, to store numerical values in
a collection class, such as ArrayList<>, the wrapper classes are needed.

import java.util.Arraylist;

/1 ...

java.util.ArraylList<Integer> a = new java.util.Arraylist<>();
a.add(10); // autoboxing

int i = a.get(0); // autounboxing

Bear in mind that conversions between primitives and wrapper objects
should be kept low if speed is important. There’s an inherit performance
penalty associated with any boxing and unboxing operation.

112

CHAPTER 23

Generics

Generics refers to the use of type parameters, which provide a way to define
methods, classes, and interfaces that can operate with different data types.
The benefits of generics are that they provide compile-time type safety and
they eliminate the need for most type conversions.

Generic Classes

Generic classes allow class members to use type parameters. Such a

class is defined by adding a type parameter section after the class name,
which contains a type parameter enclosed between angle brackets. The
naming convention for type parameters is that they should consist of a
single uppercase letter. Typically, the letter T for #ype is used. The following
example defines a generic container class that can hold a single element of
the generic type:

// Generic container class
class MyBox<T> { public T box; }

When an object of this generic class is instantiated, the type parameter
must be replaced with an actual data type, such as Integer:

MyBox<Integer> iBox = new MyBox<Integer>();

© Mikael Olsson 2022 113
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_23

https://doi.org/10.1007/978-1-4842-7371-5_23

CHAPTER 23 GENERICS

Alternatively, as of Java 7, a generic class can be instantiated with
an empty set of type parameters. This type of instantiation is possible as
long as the compiler can infer (determine) the type parameters from the
context.

MyBox<Integer> iBox = new MyBox<>();

When an instance of MyBox is created, each type parameter in the
class definition is replaced with the passed-in type argument. The object
therefore behaves as a regular object, with a single field of the Integer

type.

iBox.box = 5;
Integer i = iBox.box;

Notice that no casting is required when the stored value is set or
retrieved from the box field. Furthermore, if the generic field is mistakenly
assigned to or set to an incompatible type, the compiler will point that out.

iBox.box = "Hello World"; // compile-time error
String s = iBox.box; // compile-time error

Generic Methods

A method can be made generic by declaring it with a type parameter
section before the method’s return type. The type parameter can be

used like any other type inside of the method. You can also use it for the
method’s return type, in the throws clause and for its parameter types. The
next example shows a generic class method that accepts a generic array
parameter, the content of which is printed out.

class MyClass

{
public static <T> void printArray(T[] array)

114

CHAPTER 23 GENERICS

{

for (T element : array)
System.out.println(element);

The preceding shown class isn’t generic. Methods can be declared as
generic, independently of whether or not the enclosing class or interface
is generic. The same is true for constructors, as seen in the following

example:

public class MyApp

{
private String s;
public <T> MyApp(T t) {
s = t.toString(); // convert to string
}
public static void main(String[] args) {
MyApp o = new MyApp(10);
System.out.println(o.s); // "10"
}
}

Calling Generic Methods

A generic method is typically invoked just as a regular (non-generic)
method, without specifying the type argument:

Integer[] iArray = { 1, 2, 3 };
MyClass.printArray(iArray);

115

CHAPTER 23 GENERICS

In most cases, the Java compiler can infer the type argument of a
generic method call, so it doesn’t have to be included. But if that’s not the
case, then the type argument will need to be explicitly specified before the
method name:

MyClass.<Integer>printArray(iArray);

Generic Interfaces

Interfaces that are declared with type parameters become generic
interfaces. Generic interfaces have the same two purposes as regular
interfaces: they're either created to expose members of a class that

will be used by other classes or to force a class to implement a specific
functionality. When a generic interface is implemented, the type argument
must be specified. The generic interface can be implemented by both
generic and non-generic classes:

// Generic functionality interface
interface IGenericCollection<T>

{
void store(T t);

}

// Non-generic class implementing generic interface
class Box implements IGenericCollection<Integer>

{

private Integer myBox;
public void store(Integer i) { myBox = i; }
}

116

CHAPTER 23 GENERICS

// Generic class implementing generic interface
class GenericBox<T> implements IGenericCollection<T>
{

private T myBox;

public void store(T t) { myBox = t; }
}

Generic Type Parameters

The passed-in type argument for a generic can either be a class type,
interface type, or another generic type parameter, but it can’t be a
primitive type. Generics can have more than one type parameter defined,
by adding more of them between the angle brackets in a comma-separated
list. Bear in mind that each parameter within the brackets must be unique.

class MyClass<T, U> {}

If a generic has multiple type parameters defined, the same number of
type arguments need to be specified when the generic is used.

MyClass<Integer, Float> m = new MyClass<>();

Generic Variable Usages

Generics are only a compile-time construct in Java. After the compiler
has checked that the types used with generic variables are correct,

it will then erase all type parameter and argument information from

the generic code and insert the appropriate casts instead. That means
generics don’t provide any performance benefits over non-generic code,
because of removed runtime casts, as they do in, for example, C#. It also
means generic types can’t be used for anything that requires runtime
information—such as creating new instances of generic types or using the

117

CHAPTER 23 GENERICS

instanceof operator with type parameters. Operations that are allowed
include declaring variables of the generic type, assigning null to generic
variables, and calling Object methods.

class MyClass<T>

{
public void myMethod(Object o)
{
T t1; // allowed
t1 = null; // allowed
System.out.print(ti1.toString()); // allowed
if (o instanceof T) {} // invalid
T t2 = new T(); // invalid
}
}

The process of removing type information from generic code is known
as type erasure. For example, MyBox<Integer> would be reduced to MyBox,
which is called the raw type. This step is performed in order to maintain
backward compatibility with code written before generics became part of
the language in Java 5.

Bounded Type Parameters

It’s possible to apply compile-time enforced restrictions on the kinds of
type parameters that a generic may be used with. These restrictions, called
bounds, are specified within the type parameter section using the extends
keyword. Type parameters can be bounded by either superclass or
interface. For example, the following class B may only be instantiated with
a type argument that’s either of the type A or has that class as a superclass.

// T must be or inherit from A
class B<T extends A> {}
class A {}

118

CHAPTER 23 GENERICS

The next example specifies an interface as the bound. This will restrict
the type parameter to only those types that implement the specified
interface or are of the interface type itself.

// T must be or implement interface I
class C<T extends I> {}
interface I {}

Multiple bounds can be applied to a type parameter by specifying
them in a list separated by ampersands:

class D<T extends A & I> {}

The ampersand acts as the separator instead of a comma because
comma is already used for separating type parameters:

class E<T extends A & I, U extends A & I> {}

Aside from restricting the use of a generic to only certain parameter
types, another reason for applying bounds is to increase the number of
permitted method calls supported by the bounded type. An unbounded
type may only call the Object methods. However, by applying a superclass
or interface bound, the accessible members of that type will also become
available.

class Fruit

{
public String name;
}
class FruitBox<T extends Fruit>
{

private T box;
public void FruitBox(T t) { box = t; }
public String getFruitName()

119

CHAPTER 23 GENERICS

{

// Use of Fruit member allowed since T extends Fruit
return box.name;
}
}

Generics and Object

Before generics were introduced in Java 5, the Object type was used to
create container classes that could store any type of objects. As generics
were made available, this use of the Object type as a universal container
should be avoided. That’s because the compiler helps ensure that
generics are type safe at compile time, which can’t be done when using
the Object type.

The collection classes in the Java library, among them ArraylList, have
all been replaced with generic versions. Even so, any generic class can still
be used as if it weren’t generic, simply by leaving out the type argument
section. The default Object type will then be used as the type argument.
That’s why the non-generic version of ArrayList is still allowed. Consider
the following use of a non-generic ArraylList:

import java.util.Arraylist;

/1 ...

// Object Arraylist

Arraylist a = new ArraylList();

a.add("Hello World");

/] ...

Integer b = (Integer)a.get(0); // run-time error

120

CHAPTER 23 GENERICS

This String-to-Integer conversion will fail at runtime by throwing
a ClassCastException. Had a generic ArraylList been used instead, the
mistaken conversion would have been detected upon compilation, or
immediately in an IDE such as NetBeans. This compile-time debugging
feature is a major advantage with using generics over other coding
approaches.

import java.util.Arraylist;

/1 ...

// Generic Arraylist (recommended)

Arraylist<String> a = new Arraylist<>();
a.add("Hello World");

/] ...

Integer b = (Integer)a.get(0); // compile-time error

With the generic alternative, only the specified type argument will
be allowed into the ArrayList collection. Additionally, values obtained
from the collection don’t have to be cast to the correct type because the
compiler takes care of that.

121

CHAPTER 24

Lambda Expressions

Java 8 introduced the lambda expression, which provides a concise way
to represent a method using an expression. A lambda expression consists
of three parts: an argument list, the arrow operator (->), and a body. The
following lambda takes two integer arguments and returns their sum.

(int x, int y) -> { return x + y; };

The parameter types generally don’t need to be specified because the
compiler can determine these types automatically. This type inference also
applies to the return type. If the body contains only a single statement, you
can leave out the curly brackets, and the result of the statement will then
be returned.

(X, y) > x+y;

Lambda Objects

A lambda expression is a representation of a functional interface, which is
an interface defining a single abstract method. It can therefore be bound
to an object of such an interface provided that its functional method has a
matching signature.

interface Summable

{

public int combine(int a, int b);

}

© Mikael Olsson 2022 123
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_24

https://doi.org/10.1007/978-1-4842-7371-5_24

CHAPTER 24 LAMBDA EXPRESSIONS

public class MyApp

{
public static void main(String[] args) {
Summable s = (x, y) -> X +V;
s.combine(2, 3); // 5
}

Common functional interfaces are defined in the java.util.function
package added in Java 8. In this example, the BinaryOperator<T> interface
can be used. It represents a method that takes two arguments and returns
aresult of the same type as the arguments. Its functional method is
named apply.

import java.util.function.*;
public class MyApp

{
public static void main(String[] args) {
BinaryOperator<Integer> adder = (x, y) -> X + y;
adder.apply(2, 3); // 5
}
}

When working on a single operand and returning a value of the same
type, you can use the UnaryOperator functional interface. Note that the
parentheses surrounding the parameters can be left out when there’s only
one parameter.

UnaryOperator<Integer> doubler = x -> x*2;
doubler.apply(2); // 4

124

CHAPTER 24 LAMBDA EXPRESSIONS

Lambda Parameters

Unlike methods, lambda expressions don’t belong to any class. They're
objects in and of themselves as they’re instances of functional interfaces. A
benefit of this is that they provide a convenient way to pass functionality as
an argument to another method. In the following example, the Runnable
interface is used, which has a functional method that takes no parameters
and returns no value. This interface belongs to java.lang, and its abstract
method is named run.

public class MyApp
{

static void starter(Runnable s) { s.run(); }

public static void main(String[] args) {
Runnable r = () -> System.out.println("Hello");
starter(r); // "Hello"
}
}

You can also achieve this functionality by defining an anonymous
(unnamed) inner class, but this approach is considerably more verbose
than the lambda expression.

Runnable r = new Runnable() {
@0verride public void run() {
System.out.println("Hello");
}
};
starter(r); // "Hello"

125

CHAPTER 24 LAMBDA EXPRESSIONS

A lambda expression can capture variables from its context, provided
that the referenced variable is final or effectively final (only assigned once).
In this next example, the Consumer functional interface is used, which

represents a function that accepts one parameter and returns no value.

import java.util.function.*;
public class MyApp

{
final static String GREETING = "Hi ";

public static void main(String[] args) {
Consumer<String> ¢ = (s) ->
System.out.println(GREETING + s);
c.accept("John"); // "Hi John"
}
}

Behind the scenes, the compiler will instantiate an anonymous class
containing a single method to represent a lambda expression. That enables
lambdas to be fully backward compatible with earlier versions of the Java
runtime environment.

126

Index

Symbols

dot operator (.), 3
Concatenation operator (+), 21
Increment (++) and decrement
(—-) operators, 16
Assignment operator (=), 10

A

Abstract class
definition, 97
example, 97, 98
interfaces, 99

Access levels
definition, 79
guideline, 84
nested class, 83
package-private, 80
private, 79
protected members, 81
public modifiers, 82
top-level access, 83

app.-MyApp, 77

Array
allocation, 27
ArrayList class, 29
assignment, 28

© Mikael Olsson 2022

declaration, 27

definition, 27

multidimensional, 28
Autoboxing and autounboxing, 112

Bitwise operators, 18
Boxing, 111
break keyword, 33, 39

C

Class
accessing object members, 48
constructor, 49
constructor chaining, 51
constructor overloading, 50, 51
default constructor, 52
default values, 53
definition, 47
garbage collector, 53
invalid field values, 51
null, 52
object creation, 47, 48
Compile/run
comments, 6, 7
console window, 5, 6

127

M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5

https://doi.org/10.1007/978-1-4842-7371-5

INDEX

Compile/run (cont.)
IDE, 5
preview features, 7
Conditional statements
definition, 31
if, 31, 32
switch expression, 32-34
ternary operator, 35
Constants
compile time/runtime, 86
fields, 85
guideline, 87
local variables, 85
method parameters, 86
Constructor, 49
continue keyword, 40

D

Default package, 71

E

Enumeration/enum
class, 102, 103
definition, 101
switch statement, 101
Exception handling
catch block, 106
checked/unchecked, 109
definition, 105
finally block, 107, 108
hierarchy, 110
throwing exceptions, 109
try-catch, 105, 106

128

F

final keyword, 85
final modifier, 86

G

Generics
bounded type parameters,
118,119
classes, 113,114
definition, 113
interfaces, 116
methods, 114-116
object, 120
type parameters, 117
variable usages, 117
get method, 30
getArea method, 66
Right shift
operator (>>), 18

H

Hello World
code hints, 4
creating project, 1, 2
installation, 1
Java classes, 2

Inheritance
definition, 59
downcast, 60

operator, 60, 61
pattern matching switch, 62
restrictive method, 62, 63
upcast, 60
Integrated Development
Environment (IDE), 1
Interface
class, 92, 93
default interface methods, 94
definition, 89
example, 90, 91
functionality, 91
members, 89, 90
static interface methods, 94

J, K
Java Development

Kit (JDK), 1
Java Virtual Machine, 6

L

Lambda expressions
definition, 123
objects, 123, 124
parameters, 125, 126
parameter types, 123
Logical operators (&&), 17
Loops
break and continue, 39, 40
do while, 38
for each, 39
for, 38, 39

INDEX

labeled block, 40
while, 37

Method overloading, 44
Methods
calling, 42
defining, 41
overloading, 44
parameters, 42
passing arguments, 45
statements, 43
Module
app.MyApp, 77
creating, 75, 76
definition, 75
Multidimensional arrays, 28
MyInterface, 92

N

Named block, 40
Nested classes, 83
NetBeans, 75
new keyword, 27

O

Operators
arithmetic, 15
assignment, 16
bitwise, 18
comparison, 17

129

INDEX

Operators (cont.)
definition, 15
increment/decrement, 16, 17
logical, 17
order of precedence, 18, 19
@Override annotation, 66
Overriding

accessing redefined members, 69

hiding fields, 68
hiding methods, 67
methods, 65, 66
parent constructor, 69

P,Q

Packages
accessing members, 72, 73
default, 71
definition, 71

Primitives, 9

Primitive types, 112

print method, 3

println method, 3

R

Rectangle inherits, 97
Rectangle’s getArea method, 65

S

Static keyword
accessing static members, 56
definition, 55

130

initialization block, 57

instance initialization
block, 58

static fields, 57

static methods, 56

String

buffer class, 23, 24

class, 21

combining, 21

compare, 23

escape, 22

object, 21

pool, 21

text block, 24

T

Ternary operator (?:), 35
this keyword, 50
toString method, 24
Type erasure, 118

U

Unboxing, 111
util, 76

VW, X, Y,Z
Variables
anonymous code
block, 13
assign, 10
Boolean type, 12

chars, 12

data types, 9

declare, 10

definition, 9
floating-point types, 11, 12

INDEX

integer types, 11

scope, 13

type interface, 14
void keyword, 41

131

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hello World
	Installing
	Creating a Project
	Hello World
	Code Hints

	Chapter 2: Compile and Run
	Running from the IDE
	Running from a Console Window
	Comments
	Preview Features

	Chapter 3: Variables
	Data Types
	Declaring Variables
	Assigning Variables
	Using Variables
	Integer Types
	Floating-Point Types
	Char Type
	Boolean Type
	Variable Scope
	Anonymous Block
	Type Inference

	Chapter 4: Operators
	Arithmetic Operators
	Assignment Operators
	Increment and Decrement Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence

	Chapter 5: String
	Combining Strings
	Escape Characters
	String Compare
	StringBuffer Class
	Text Blocks

	Chapter 6: Arrays
	Array Declaration
	Array Allocation
	Array Assignment
	Multidimensional Arrays
	ArrayList Class

	Chapter 7: Conditionals
	If Statement
	Switch Statement
	Switch Expression
	Ternary Operator

	Chapter 8: Loops
	While Loop
	Do While Loop
	For Loop
	For Each Loop
	Break and Continue
	Labeled Block

	Chapter 9: Methods
	Defining Methods
	Calling Methods
	Method Parameters
	Return Statement
	Method Overloading
	Passing Arguments

	Chapter 10: Class
	Object Creation
	Accessing Object Members
	Constructor
	This Keyword
	Constructor Overloading
	Constructor Chaining
	Initial Field Values
	Default Constructor
	Null
	Default Values
	Garbage Collector

	Chapter 11: Static
	Accessing Static Members
	Static Methods
	Static Fields
	Static Initialization Blocks
	Instance Initialization Blocks

	Chapter 12: Inheritance
	Upcasting
	Downcasting
	Instanceof Operator
	Pattern Matching Switch
	Restricting Inheritance

	Chapter 13: Overriding
	Overriding Methods
	Override Annotation
	Hiding Methods
	Hiding Fields
	Accessing Redefined Members
	Calling Parent Constructor

	Chapter 14: Packages and Import
	Accessing Packages

	Chapter 15: Modules
	Creating a Module
	Using a Module

	Chapter 16: Access Levels
	Private Access
	Package-Private Access
	Protected Access
	Public Access
	Top-Level Access
	Nested Class Access
	Access-Level Guideline

	Chapter 17: Constants
	Local Constants
	Constant Fields
	Constant Method Parameters
	Compile-Time and Runtime Constants
	Constant Guideline

	Chapter 18: Interface
	Interface Members
	Interface Example
	Functionality Interface
	Class Interface
	Interface Classes
	Default Interface Methods
	Static Interface Methods

	Chapter 19: Abstract
	Abstract Class Example
	Abstract Classes and Interfaces

	Chapter 20: Enum
	Enum Class

	Chapter 21: Exception Handling
	Try-Catch
	Catch Block
	Finally Block
	Throwing Exceptions
	Checked and Unchecked Exceptions
	Exception Hierarchy

	Chapter 22: Boxing and Unboxing
	Autoboxing and Autounboxing
	Primitive and Wrapper Guideline

	Chapter 23: Generics
	Generic Classes
	Generic Methods
	Calling Generic Methods
	Generic Interfaces
	Generic Type Parameters
	Generic Variable Usages
	Bounded Type Parameters
	Generics and Object

	Chapter 24: Lambda Expressions
	Lambda Objects
	Lambda Parameters

	Index

